

4.17 UTILITIES AND SERVICE SYSTEMS

4.17.1 Introduction

The purpose of this section is to describe the existing utilities and service systems setting and the Summit Station Specific Plan project's (Project) consistency with applicable goals and policies, identifies and analyzes environmental impacts, and recommends measures to reduce or avoid adverse impacts anticipated from implementation of the Project, as applicable. As such, the information and analysis herein rely on the General Plans of both the City of Beaumont (City) and the County of Riverside (County). A Water Supply Assessment (WSA) was prepared for the Project in November 2021 by Albert A. Webb Associates, Inc., included as **Appendix I**.

4.17.2 Environmental Setting

Project Setting

The Project encompasses approximately 188 acres of the former Sunny-Cal Specific Plan, which is in the northwest portion of the City. The Sunny-Cal Specific Plan properties were assigned overlying water rights to the Beaumont Groundwater Basin pursuant to the 2004 adjunction of the Beaumont Basin (Judgment). The original Safe Yield¹ of the Beaumont Basin in the 2004 Judgement was 8,650 acre-feet per year (AFY). The current Safe Yield is 6,700 AFY. The 2004 Judgment assigned the original Sunny-Cal properties a total of 1,784 acre-feet (AF) of overlying water rights. Subsequent actions removed six parcels totaling 138.14 acres, thus decreasing the Sunny-Cal water right to 1,439.5 AF. Based on the current Safe Yield, the current water right attribute to the Project parcels is 1,114.99 AF.

The Project is located south of Cherry Valley Boulevard, north of Brookside Avenue, and east of Interstate (I-) 10, refer to **Exhibit 3.0-2, Local Vicinity**. The following Assessor Parcel Numbers (APNs) are associated with the Project site: 407-230-22, -23, -24, -25, -26, -27, -28 and 407-190-016 and -017. The entire Project site is currently designated by the City General Plan land use plan as Single-Family Residential with a zoning designation of Specific Plan. The Project includes a City of Beaumont General Plan Amendment, Specific Plan Approval, Tentative Parcel Map, Plot Plan Approval, and a Development Agreement. Remaining uses for the Project site include vacant property containing cement pads and several structures.

Water

An existing 16-inch water line is present in Cherry Valley Boulevard fronting the Project area. The property also contains three existing wells. One active Beaumont-Cherry Valley Water District (BCVWD) well (Well 29). To serve the proposed water infrastructure, the Project would connect to the existing 16-inch diameter water line in Cherry Valley Boulevard and connect to an existing 24-inch diameter water line in Brookside Avenue (see **Exhibit 3.0-9, Conceptual Water Plan**). Laterals would be extended from this

¹ Safe Yield is defined in the 2004 Judgement as, "The maximum quantity of water which can be produced annually from a groundwater basin under a given set of conditions without causing a gradual lowering of the groundwater level leading eventually to depletion of the supply in storage." Pursuant to the Judgment, the Safe Yield is reevaluated every 10 years.

backbone main to individual buildings. The Project is located in BCVWD potable water pressure zone 2650 that includes the Hannon Potable Water Tank with 5-million-gallon (MG) capacity. A fire flow of 4,000 gallons per minute (gpm) at 20 pounds per square inch (psi) for four hours will be required for the Project. BCVWD will provide the Project proponent a Plan of Service with Development Conditions stipulating what improvements will be required as part of the Project. As of 2014, the nine APNs associated with the Project site have 1,114.99 AF in overlying water rights.

Water Supply Assessment

A Water Supply Assessment (WSA) was prepared for the proposed Project to evaluate the existing and future demands on the water supply needed to be supplied from BCVWD. The Project site is currently vacant and does not require potable water. The WSA used information from both BCVWD and San Gorgonio Pass Water Agency Urban Water Management Plan's (UWMP) to examine existing water supply entitlements, water rights, and water service contracts relevant to the water supply for the proposed Project, water received in prior years pursuant to those entitlements, and any additional planned water supplies, to assess whether sufficient water supplies would be available for the proposed Project.

Water Sources

San Gorgonio Pass Water Agency (SGPWA)

The SGPWA is one of 29 State Water Contractors. Each Contractor is responsible for the importation of water from northern California through the State Water Project (SWP) into their service area. The contractors use the imported water to supplemental water supplies of local water districts such as BCVWD, which would serve the proposed Project, within their service areas. The SGPWA boundaries extends from Calimesa to Cabazon and includes the BCVWD, as well as the City of Banning and the Yucaipa Valley Water District as some of its retail service providers.

SGPWA prepared an UWMP in 2020. SGPWA accounted for water demands within the BCVWD service area. The BCVWD UWMP, also prepared in 2020 considered development of the Project site. Because the proposed Project was included in the demands in BCVWD's 2020 UWMP, it is considered included in the 2020 SGPWA UWMP and those regional planning efforts.

Beaumont-Cherry Valley Water District

BCVWD is the water supplier to the City which includes the proposed Project. BCVWD has two sources of potables water supply: District wells in Edgar Canyon (Little San Gorgonio Creek) and the Beaumont Groundwater Basin (Beaumont Basin). The Beaumont Basin is an adjudicated basin. BCVWD also produces non-potable water from a District well in the Beaumont Basin. Recycled water is not yet available for distribution to BCVWD customers from the City Wastewater Treatment Plant. BCVWD purchases imported SWP water from SGPWA for the purposes of recharging the Beaumont Basin; SWP water is not currently distributed directly to BCVWD customers. BCVWD service area includes the City of Beaumont and the majority of unincorporated Cherry Valley and BCVWD would provide potable and non-potable water to these areas. BCVWD owns and operates the water system that serves the areas surrounding the

Project site. BCVWD owns approximately 1,524 acres of watershed land north of Cherry Valley along the Little San Gorgonio Creek (also known as Edgar Canyon) and Noble Creek that are used as water sources. BCVWD diverts water from Little San Gorgonio Canyon Creek into a series of ponds adjacent to the creek where it percolates and recharges the shallow aquifers in Edgar Canyon.

BCVWD's present service area covers approximately 28 square miles, virtually all of which is in Riverside County and includes the City of Beaumont and the community of Cherry Valley. The Project site is within the BCVWD Sphere of Influence (SOI) boundaries, but outside of the water service area boundaries. As part of the proposed Project, the Project site require annexation into the BCVWD water service area and a water main would be extended onto the Project site. The projected BCVWD-wide water demands from 2025 to 2045 are shown in **Table 4.17-1**.

Table 4.17-1: Projected Future BCVWD Water Demand (AFY)

Customer Type	2025	2030	2035	2040	2045
Single Family Residential	9,302	10,047	10,849	11,479	12,041
Multifamily Residential	367	397	429	454	476
Commercial	214	231	249	264	276
Industrial	186	201	217	230	241
Institutional/ Governmental	1,106	1,194	1,290	1,365	1,431
Agricultural Irrigation	55	60	64	68	72
Landscape (potable)	209	226	244	258	271
Other (potable) ¹	318	343	370	392	411
Other (non-potable) ²	276	246	228	278	328
Groundwater Recharge ³	1,500	1,200	1,000	1,000	1,000
Losses (estimated)	1,499	1,614	1,738	1,835	1,922
Subtotal	15,032	15,759	16,678	17,623	18,469
Recycled Water ⁴	2,233	2,421	2,706	2,840	2,906
Total	17,265	18,180	19,384	20,463	21,375

Source: Water Supply Assessment, 2021. Table 2-4, page 2-9. (Appendix 1).
Notes: From BCVWD 2020 UWMP, pp. 4-12, 4-14. Projected water use by sector based off of water demand distribution by sector for 2020. Groundwater recharge quantities are planned qualities to build and maintain 5-year supply per BCVWD Resolution no. 2014-05; landscape demand will be met with recycled water and supplemented with other non-potable water as needed.

(1) Metered construction and street sweeping water, etc.
(2) Raw Water to supplement non-potable water system (used for irrigation)
(3) Imported raw water banked for future extractions during dry periods. Does not include imported water to meet adjudication replacement obligations.
(4) The recycled water demand includes the forecast amount used on landscaping irrigated by the non-potable water system. Source of recycled water is the City of Beaumont. Also includes a portion of the golf course irrigation demands on 268 and 203 AFY for Tukwet Canyon and Oak Valley Greens, respectively.

Water System and Operation

BCVWD provides potable water and scheduled irrigation water to users through the potable water system. BCVWD provides non-potable water (often referred to as purple pipe) for landscape irrigation of parks, playgrounds, school yards, street medians and common areas through its non-potable (recycled) water system. Potable water service would be extended to the Project site, but non-potable water service is not

available to the Project site. At the end of 2020, the BCVWD had over 19,659 active metered connections. Further, the potable water demand was 10,845 AF and the non-potable water demand (including supplemental potable water) was 1,647 AF for a total of 12,492 AF (not including system losses of 1,326 AF) in CY 2020. Refer to Chart 2-1 of the WSA, for an illustration of the BCVWD 2020 individual water demands for CY 2020.

Surface Water

BCVWD does not use local surface water directly but does have two active surface water diversions in Edgar Canyon, which are on file with the State of California Division of Water Rights. These diversions direct flows to percolation ponds in Edgar Canyon to recharge the shallow aquifers for wells in the upper and middle Edgar Canyon. BCVWD has a pre-1914 appropriative water right to divert up to 3,000 miner's inches (MIH) or approximately 43,440 AFY for domestic and irrigation uses. However, the District has never required such a large quantity of water and the watersheds may not be capable of supplying such quantities in an average year. Further, the District does not include the diversion right in water supply calculations.

BCVWD retains the right to capture the occasional very high flood flows that are captured in basins located at the mouth of Edgar Canyon. During those times, SGPWA would be precluded from percolating imported water there and instead use other SGPWA facilities.

Groundwater

BCVWD's potable water system is supplied by 24 wells in Edgar Canyon and the Beaumont Groundwater Basin, which is an adjudicated basin and managed by the Beaumont Basin Watermaster. Groundwater supply is augmented with imported water from the SPW and dispersed by SGPWA. Imported water is typically used for groundwater recharged at BCVWD's recharge facility at the intersection of Brookside Avenue and Beaumont Avenue.

Reservoirs

BCVWD has 14 reservoirs ranging in size from 0.5 million gallons (MG) to 5 MG. Total storage is approximately 22 MG, slightly more than 2 average days or 1 maximum day. The reservoirs provide gravity supply to their respective pressure zones. BCVWD's system is constructed such that any higher zone reservoir can supply water on an emergency basis to any lower zone reservoir. There are booster pumps in the system that allow water to be pumped up from a lower pressure zone to a higher-pressure zone also. This provides great flexibility in system operations. Sufficient reservoir redundancy exists permitting reservoirs to be taken out of service for maintenance.

Potable Water Transmission

The Edgar Canyon wells currently provide about 10 percent of the District's potable water. The wells pump water to a gravity transmission main that extends the full length of the BCVWD-owned properties in Edgar Canyon. The transmission main connects to the distribution system in Cherry Valley. Because of the range of topographic elevations in the BCVWD's service area, 11 pressure zones are needed to provide reasonable operating pressures for customers. BCVWD has 14 reservoirs ranging in size from 0.5 MG to

5 MG. Total storage is approximately 22 MG. The backbone transmission system in the main pressure zones is primarily 24-inch diameter pipelines though there are some 30-inch diameter pipelines leading to some reservoirs. There are several small, older, distribution lines in the system that are gradually being replaced over time with minimum eight-inch diameter ductile iron pipe. The system can provide over 4,000-gallons per minute (gpm) fire flow in the industrial/commercial areas of the service area.

Recharge Facilities and Imported Water

BCVWD has a 78-acre site for ground water recharge using both imported water and storm water that is piped to the location so it can infiltrate to the ground. From 2006 through 2018, it is estimated that an estimated 84.242 acre-ft. of imported water has been used for recharged. This is a small fraction of the recharge capacity which is between 25,000 to 30,000 AFY. BCVWD is working with the Riverside County Flood Control and Water Conservation District (RCFCWCD) to increase recharge using stormwater. The stormwater drainage and recharge Project anticipated to be operational in 2022 and incorporates a 505-acre area that include the Project site.

Recycled Water System

Currently, BCVWD does not produce or distribute recycled water. The City's Wastewater Treatment Plant is located within BCVWD's service area and has been recently upgraded and expanded to include the ability to produce recycled water for distribution. BCVWD and the City entered into a Memorandum of Understanding (MOU) on July 10, 2019, which defined the general terms, roles, and responsibilities of both agencies as they related to the delivery of recycled water from the City's upgraded and expanded treatment facility to BCVWD. Efforts are currently underway by both agencies to develop an agreement to set the specific terms and responsibilities. Studies and plans have been completed for a recycled water transfer pumping station.

The volume of wastewater collected from BCVWD's service area in 2020 was 4,032 AF; because 2,020 AFY must be discharged by the City's treatment plant to Cooper's Creek to meet certain environmental habitat mitigation requirements, the remaining 2,012 AFY would hypothetically be available for recycled water use by BCVWD. Projected future recycled water supplies available to the BCVWD are in **Table 4.17-2**, below.

BCVWD has an extensive network of more than 40 miles of non-potable water transmission pipelines already built that can convey untreated imported water, groundwater, and recycled water. In addition, there is a network of smaller distribution mains, 2 MG non-potable water reservoir, and about 300 existing landscape connections to the non-potable system receiving 1,620 AF of water. The non-potable system is pressurized currently with groundwater from Well 26. This is supplemented with potable water during periods of high demand.

Table 4.17-2: Projected Future Recycled Water Supply (AFY)

	2020	2025	2030	2035	2040	2045
Estimated amount which can be distributed (AFY)	1,630	2,017	2,381	2,892	2,955	2,915

Source: Water Supply Assessment, 2021. Table 3-5, page 3-13. (Appendix I).

Wastewater

Wastewater

There are three existing wastewater reclamation plants in the San Gorgonio Pass Area. Only the City of Beaumont's Wastewater Treatment Plant (WWTP) No. 1 is within BCVWD's service area. Wastewater generally flows by gravity to WWTP No. 1. The City also uses nine wastewater lift and pumping stations in the southeastern and western portions of the City to maintain flows through the collection systems. The treatment facility provides secondary treatment using the Biolac activated sludge process, tertiary filtration and ultraviolet disinfection and operates under permit R8-2015-0026 NPDES CA 0105376. WWTP No. 1 has a current permitted capacity of four mgd.

The WWTP is a tertiary treatment facility and is located at 715 W. 4th Street. The WWTP receives and treats domestic and commercial/industrial wastewater generated from users within the City, in addition to approximately 850 connections outside City boundaries. The facility was developed in 1994, and upgraded in 2006, to expand its capacity to four mgd. In 2018, the City approved the Beaumont Wastewater Treatment Plan Upgrade/Expansion and Brine Pipeline Project. The expansion is planned to expand the plant treatment capacity from four mgd to six mgd and includes a system upgrade to include advanced treatment, recycled water pump station, and recycled water storage. The second phase of the expansion includes constructing a 12-inch diameter brine waste disposal gravity pipeline extending 23 miles from the WWTP north to the nearest connection point of the Inland Empire Brine Line (IEBL), located near the north side of E Street Bridge in the City of San Bernardino.

Stormwater and Drainage

The City is in Zone 5 of the Riverside County Flood Control District's Beaumont Area Master Drainage Plan. The Project area slopes in a northeast to southwest direction with site elevations ranging from 2,570 to 2,420 feet above mean sea level (amsl). A stream course crosses the Project area. The stream passes from Brookside Avenue across the southwest corner of the property. The site presently sheet flows towards the existing stream course.

The Project's drainage plan would collect stormwater through catch basins placed throughout the Project area. Stormwater would be discharged into a series of above and below-ground detention basins to reduce flows and to provide treatment prior to being discharged into the existing stream course in Planning Area 3 (see **Exhibit 3.0-11, Conceptual Drainage Plan**).

RCFCWCD provides regional facilities, but stormwater management services for the City and for the Project site are provided by the City. The Project site is currently unimproved, and no storm drainage facilities are in place. Runoff from the site has historically drained to Coopers Creek and then directed via culverts under State Route (SR)- 60 to San Timoteo Creek, which ultimately drains westerly to the Santa Ana River Basin.

Urban runoff is untreated water from the impervious surfaces (hardscape, paving, rooftops, etc.) of developed sites. Runoff is conducted from these sites to the storm drain system and typically directed into local streams and rivers. Anything thrown, swept, washed, or poured into the street, gutter or a catch

basin can flow into these receiving waters and eventually flow to the ocean. To address this issue, the City adopted the U.S. Environmental Protection Agency's (U.S. EPA) National Pollution Discharge Elimination System (NPDES) regulations to reduce pollutants in urban runoff and in stormwater. Compliance with this permit(s) would be the responsibility of the State Water Resources Control Board (SWRCB).

As part of the NPDES regulations, the City of Beaumont was issued a Municipal Separate Storm Sewer System (MS4) Permit. This State Permit places pollution prevention requirements on planned developments, construction sites, commercial and industrial businesses, municipal facilities and activities, and residential communities. The Project site is located within the boundaries of the San Timoteo Watershed Management Authority, with which the City entered a joint powers agreement to manage water resources.

Stormwater drainage also would be subject to the City of Beaumont adopted a Drainage Management Plan in 1999. One of the objectives of this plan is to reduce levels of pollutants within storm water runoff and increasing public awareness of water quality problems.

Solid Waste

Riverside County Waste Management

The Riverside County Waste Management Department (RCWMD) is currently responsible for providing solid waste management services for the Project site. The department operates three regional Class III municipal solid waste landfills: Lamb Canyon, El Sobrante, and Badlands. Waste haulers are able to use any of the three landfills but would most likely use Lamb Canyon because it is the closest.

Waste Management

Waste pickup and disposal services within Beaumont is provided by Waste Management (WM). Solid waste is disposed at the Lamb Canyon Landfill, located within the southwesterly portion of the City's SOI, which will be maintained as an unincorporated County enclave within the City's General Plan Area, and will continue to be operated and maintained by the RCWMD. The City and RCWMD would review any adjacent land use or development proposals to ensure that potential land use conflicts are avoided.

Lamb Canyon Landfill

The Lamb Canyon Landfill is located between the City of Beaumont and City of San Jacinto at 16411 Lamb Canyon Road (SR-79), south of I-10 and north of Highway 74. The landfill is owned and operated by Riverside County. The landfill property encompasses approximately 1,189 acres, of which 703.4 acres encompass the current landfill permit area. Of the 703.4-acre landfill permit area, approximately 144.6 acres are permitted for waste disposal. The landfill is currently permitted to receive 5,000 tons per day (tpd) of MSW for disposal and 500 tpd for beneficial reuse. The site has an estimated total disposal capacity of approximately 20.7 million tons. As of January 1, 2020 (beginning of day), the landfill has a total remaining capacity of approximately 8.7 million tons. The current landfill remaining disposal capacity is estimated to last, at a minimum, until approximately 2029. From January 2019 to December 2019, the

Lamb Canyon Landfill accepted a daily average of 1,925 tons with a period total of approximately 591,125 tons. Landfill expansion potential exists at the Lamb Canyon Landfill site.²

Badlands Landfill

The Badlands Landfill is located northeast of the City of Moreno Valley at 31125 Ironwood Avenue and accessed from State Highway 60 at Theodore Avenue. The landfill is owned and operated by Riverside County. The existing landfill encompasses 1,168.3 acres, with a total permitted disturbance area of 278 acres, of which 150 acres are permitted for refuse disposal. The landfill is currently permitted to receive 4,500 tpd of MSW for disposal and 300 tpd for beneficial reuse. The site has an estimated total capacity of approximately 20.5 million tons. As of January 1, 2020 (beginning of day), the landfill had a total remaining disposal capacity of approximately 5.1 million tons.⁵ The current landfill remaining disposal capacity is estimated to last, at a minimum, until approximately 2022. From January 2019 to December 2019, the Badlands Landfill accepted a daily average of 2,878 tons with a period total of approximately 886,388 tons. Landfill expansion potential exists at the Badlands Landfill site (RCDWR, 2020).³

El Sobrante Landfill

The El Sobrante Landfill is located east of I-15 and Temescal Canyon Road to the south of the City of Corona and Cajalco Road at 10910 Dawson Canyon Road. The landfill is owned and operated by USA Waste of California, a subsidiary of Waste Management, Inc., and encompasses 1,322 acres, of which 645 acres are permitted for landfill operation. The El Sobrante Landfill has a total disposal capacity of approximately 209.9 million cubic yards and can receive up to 70,000 tons per week (tpw) of refuse. USA Waste must allot at least 28,000 tpw for County refuse. The landfill's permit allows a maximum of 16,054 tons per day (tpd) of waste to be accepted into the landfill, due to the limits on vehicle trips. If needed, 5,000 tpd must be reserved for County waste, leaving the maximum commitment of Non-County waste at 11,054 tpd. Per the 2018 Annual Report, the landfill had a remaining in-County disposal capacity of approximately 53.8 million tons. In 2018, the El Sobrante Landfill accepted a daily average of 11,031 tons with a period total of approximately 3,386,471 tons. The landfill is expected to reach capacity in approximately 2060 (RCDWR, 2020).⁴

Natural Gas

The Project site is within the service territory of the Southern California Gas Company (SoCalGas). SoCalGas is the largest natural gas distribution utility in the nation, serving approximately 21.8 million consumers through 5.9 million gas meters in over 500 communities. The service area for SoCalGas consists of over 24,000 square miles throughout central and southern California with a total storage capacity of approximately 136 billion cubic feet (bcf). In an effort to ensure that natural gas is always available to its customers, SoCalGas employs the use of four underground storage tanks: Aliso Canyon Storage Facility,

² RCDWR. *Lamb Canyon Landfill*. Available at <https://www.rcwaste.org/landfill/lambcanyon>. Accessed January 2022.

³ RCDWR. *Badlands Landfill*. Available at <https://www.rcwaste.org/landfill/badlands>. Accessed January 2022.

⁴ RCDWR. *El Sobrante Landfill*. Available at <https://www.rcwaste.org/landfill/elsobrante>. Accessed January 2022.

Honor Ranch Storage Facility, La Goleta Storage Facility, and Playa del Rey Storage Facility. These facilities help balance the energy supply and demand.

Electric

The Project site is located within the 50,000 square mile energy service territory of Southern California Edison (SCE). It is one of the largest service providers in the nation, providing service to over 5 million customers throughout nearly a dozen counties in southern California.

Telephone and Cable

Telephone service is primarily provided to the Project site and surrounding areas by Verizon. Cable television service is primarily provided to the Project site and surrounding areas by Time Warner Cable. Currently, Time Warner Cable provides cable television to the City, and would provide service once the Project site is annexed. Verizon currently operates copper and fiber optic facilities from its Coachella Central Office in the City. Verizon also provides high speed fiber optic communications and internet services to residences and businesses throughout southern California, including to the City.

4.17.3 Regulatory Setting

Federal

Safe Drinking Water Act

The U.S. EPA administers the Safe Drinking Water Act (SDWA), the primary federal law that regulates the quality of drinking water and establishes standards to protect public health and safety. The Federal Department of Health Services (DHS) implements the SDWA and oversees public water system quality statewide. DHS establishes legal drinking water standards for contaminants that could threaten public health.

Clean Water Act

In 1972, the Federal Water Pollution Control Act Amendments were enacted to address water pollution problems. After an additional amendment in 1977, this law was re-named the Clean Water Act (CWA). Thereafter, it established the regulation of discharges of pollutants into waters of the United States by the U.S. EPA. Under the CWA, the U.S. EPA can implement pollution control programs and set water quality standards. Additionally, the CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit is obtained pursuant to its provisions

State

Water

Senate Bill (SB) 610 requires the preparation of a WSA to examine existing water supply entitlements, water rights, and water service contracts relevant to the water supply for a proposed project. Projects required to prepare a WSA must meet one of the following criteria as defined by SB 610:

- (a) “Project” means any of the following:

1. Residential development of more than 500 dwelling units.
 2. Shopping center or business establishment employing more than 1,000 persons or having more than 500,000 square feet of floor area.
 3. Commercial office building employing more than 1,000 persons or having more than 250,000 square feet of floor area.
 4. Hotel or motel, or both, having more than 500 rooms.
 5. Industrial, manufacturing or processing plant, or industrial park planned to employ more than 1,000 persons, occupying more than 40 acres of land, or having more than 650,000 square feet of floor area.
 6. Mixed-use project that includes one or more of the projects specified above.
 7. Project that would demand an amount of water equivalent to, or greater than, the amount of water required for 500 dwelling units.
- (b) If a public water system has fewer than 5,000 service connections, then "project" means any proposed residential, business, commercial, hotel or motel, or industrial development that would account for an increase of 10 percent or more in the number of the public water system's existing service connections, or a mixed-use project that would demand an amount of water equivalent to, or greater than, the amount of water required by residential development that would represent an increase of 10 percent or more in the number of the public water system's existing service connections.

Under Assembly Bill (AB) 325, all developer-installed landscaping must be accompanied by a landscape package that documents how water use efficiency would be achieved through design. In addition, Title 24 of the California Code of Regulations incorporates the California Building Standards, included as the California Plumbing Code (Part 5), which promotes water conservation. Title 20 addresses public utilities and energy and includes appliance and efficiency standards that promote water conservation. A number of state laws require water-efficient plumbing fixtures in structures. The California Fire Code, Appendix B, outlines fire flow and storage reserve requirements for fire protection.

Solid Waste

AB 939

The Integrated Waste Management Act (AB 939) mandates that communities reduce their solid waste. AB 939 required local jurisdictions to divert 25 percent of their solid waste by 1995 and 50 percent by 2000, compared to a baseline of 1990. AB 939 also established an integrated framework for program implementation, solid waste planning, and solid waste facility and landfill compliance.

AB 341

AB 341 focuses on increased commercial waste recycling as a method to reduce greenhouse gas (GHG) emissions. The regulation requires businesses and organizations that generate four or more cubic yards of waste per week to recycle. AB 341 requires businesses to do at least one of the following:

- Source separate recyclable and/or compostable material from solid waste and donate or self-haul the material to recycling facilities.
- Subscribe to a recycling service with waste hauler.
- Provide recycling service to tenants (if commercial or multi-family complex).
- Demonstrate compliance with requirements of California Code of Regulations Title 14.

AB 1826

AB 1826 requires businesses and multifamily complexes to arrange for organic waste recycling services. Businesses subject to AB 1826 are required to do at least one of the following:

- Source separate organic material from all other recyclables and donate or self-haul to a permitted organic waste processing facility.
- Enter into a contract or work agreement with gardening or landscaping service provider or refuse hauler to ensure the waste generated from those services meet the requirements of AB 1826.

Urban Water Management Planning Act

In 1983, the California legislature enacted the Urban Water Management Planning Act (California Water Code [CWC], §§ 10610–10656), which requires specified urban water suppliers within the state to prepare an UWMP and update it every five years. Specifically, §§ 10610.04 et seq. as amended, of the California Urban Water Management Planning Act specifies that:

“Urban Water Suppliers shall be required to develop water management plans to actively pursue the efficient use of available supplies. As such, UWMPs serve as an important element in documenting water supply availability and reliability for purposes of compliance with SBs 610 and 221, which link water supply sufficiency to large land-use development project approvals. Urban water suppliers also must prepare UWMPs, pursuant to the Urban Water Management Planning Act, in order to be eligible for state funding and drought assistance”.

In August 2021, the BCVWD Board of Directors adopted the District’s 2020 UWMP. This plan details BCVWD’s water demand projections and provides information regarding BCVWD’s water supply. BCVWD’s 2020 UWMP relies heavily on information and assurances included in the following documents:

- 2015 BCVWD Potable Water Master Plan Update (January 2016)
- 2016 BCVWD Non-Potable Water Master Plan (January 2017)
- Recycled Water Facilities Planning Report for Recycled Water Pipeline and Pump Station (June 2014)
- BCVWD White Papers No. 1-7 (Published dates vary, range September 2017 – September 2018)
- City of Beaumont, General Plan (December 2020)
- Pass Area Land Use Plan (December 6, 2016), part of Riverside County General Plan (December 8, 2015)

- 2020 Urban Water Management Plan for the SGPWA (June 2020)

State Water Resources Control Board

The SWRCB is the California (State) agency focused on providing and ensuring clean sustainable water for all state residents. This state agency works alongside other federal programs like the CWA to regulate water sources and uses. The SWRCB regulates water consumption for irrigation and drinking, as well as water discharges from construction, municipal uses, storm water, and other sources.

The Water Conservation Act of 2009 (CWC §§ 10608–10608.64). The Water Conservation Act of 2009 (often referred to as “SBx7-7” or the “20 by 2020 law”) establishes the goal of achieving a 20 percent reduction in statewide urban per capita water use by December 31, 2020, and the interim goal of achieving a 15 percent reduction by 2015. In an effort to achieve those goals, SBx7-7 requires urban retail water suppliers to develop technical information (e.g., baseline daily per capita water use, water use targets, and interim water use targets) and to report that information in their UWMPs. As further discussed below, two of the primary calculations required by SBx7-7 are Base Daily Per Capita Water Use (average gallons per capita per day [gpcd] used in prior years), and Compliance Water Use Targets (gpcd targets for 2015 and 2020). The Base Daily Per Capita Water Use calculation is based on gross water use by an agency in each year and can be based on a 10-year average ending no earlier than 2004 and no later than 2010, or on a 15-year average if 10 percent of the agency’s 2008 municipal demand was met by recycled water. Using this Base Daily Per Capita Water Use figure, an urban retail water supplier must then determine its urban water use target for 2020 and its interim water use target for 2015, both in terms of “gpcd.” Section 10608.20(b) of SBx7-7 establishes four alternative methods for calculating the Compliance Water Use Targets. Generally, the alternative methods are: (1) 80 percent of Base Daily Per Capita Water Use; (2) adherence to certain water use performance standards; (3) 95 percent of the applicable state hydrologic region target as set forth in the State’s draft 20 by 2020 Water Conservation Plan; or (4) the provisional target method and procedures developed by the Department of Water Resources pursuant to SBx7-7.1. Importantly, per capita reductions under SBx7-7 can be accomplished through any combination of increased water conservation, improved water use efficiency, and increased use of recycled water to offset potable demands. Potable demand offsets can occur through direct reuse of recycled water, such as for irrigation, or indirect potable reuse through groundwater recharge and reservoir augmentation. SBx7-7 provides additional flexibility by allowing compliance on an individual agency basis or through collaboration with other agencies in a region. The City of Beaumont’s compliance with and application of SBx7-7 requirements are further discussed below.

SB 610: Water Supply Planning (CWC §§ 10910 through 10915). Signed into law October 9, 2001, SB 610 resulted in additions and amendments to CWC §§ 10910 to 10915 and Public Resource Code (PRC) § 21151.9. As noted above, SB 610 provides that when a city or county determines that a “project” as defined in CWC § 10912 is subject to review under CEQA, the city or county must identify the water supply agency that would provide retail water service to the Project and request that water supplier to prepare a WSA.

Regional

Beaumont Basin Watermaster

The Beaumont Basin Watermaster was formed on February 4, 2004 as a result of a negotiated Stipulated Agreement between several parties with interests in the Beaumont Groundwater Basin, including the City.

The Judgment entered in the Superior Court of the State of California for the County of Riverside (Case No. RIC 389197), provides the Watermaster with the authority and responsibility to administer the adjudicated water rights within the Beaumont Basin. Pursuant to the Judgment, the Court appointed a five-member Watermaster committee consisting of representatives from the cities of Banning and Beaumont, the BCVWD, the Yucaipa Valley Water District, and South Mesa Water Company.

The Beaumont Basin encompasses approximately 26 square miles, has a current safe yield of approximately 8,650 AF, a total storage capacity available of up to 200,000 AF for conjunctive use. By approving the Stipulated Judgment, the Court approved the responsibility for the management of the Beaumont Basin to the Watermaster. The Court retained its continuing jurisdiction should there be any need in the future to resolve difficult questions.

Master Drainage Plan

The RCFCWCD adopted the Beaumont Master Drainage Plan (MDP, July 1983), the boundaries of which include the Planning Area. Many cities within the RCFCWCD boundary that have a MDP will also establish an Area Drainage Plan (ADP), which is the financing mechanism used to offset taxpayer costs for proposed drainage facilities. According to the ADP, fees to support construction of MDP facilities are assessed on new development within the plan area. Currently, an ADP has not been established for the City of Beaumont.⁵

Local

Beaumont Municipal Code

The following chapters of the Beaumont Municipal Code (MC) address utilities and service system topics:

Title 8 – Health and Safety, Chapter 8.12 – Solid Waste Management

Establishes mandatory solid waste collection in the City for the protection of the health, safety, and welfare of the City's residents, and to carefully control the collection and disposal of solid waste so that the reductions required to be made by PRC § 40000 et seq. (AB 939) can be planned for and accurately measured.

⁵ Riverside County Flood Control and Water Conservation District. *Master Drainage Plan*. Available at <http://content.rcflood.org/MDPADP/>. Accessed March 4, 2022.

Title 8 – Health and Safety, Chapter 8.14 – Mandatory Recycling Requirements for Commercial Facilities

Establishes requirements for the recycling of recyclable materials generated from commercial facilities. These requirements are intended to increase the diversion of recyclable materials from landfills, conserve capacity and extend the useful life of landfills utilized by the City, reduce GHG emissions, and avoid the potential financial and other consequences to the City of failing to meet state law diversion requirements.

Title 13 – Public Services, Chapter 13.04 – Sewage Discharges

Restricts the types of discharges allowed in the sanitary sewer system.

Title 13 – Public Services, Chapter 13.08 – Sewer System

Establishes the methods by which sewage will be handled and restricts deposition in any unsanitary manner upon public or private property any human fecal matter, garbage, or other objectionable waste. It is also unlawful to discharge to the ground or to a natural watercourse any sewage, including, but not limited to, domestic or industrial wastewater or other polluted water, in a manner that would create a hazard or nuisance or that would impair the usefulness of groundwater or surface water.

Title 13 – Public Services, Chapter 13.09 – Regulating Fats, Oils and Grease (F.O.G.) Management in Food Service Establishments

Demonstrates compliance with the Order No. DWQ 2006-0003 adopted by the SWRCB in May 2006, mandating implementation of various tasks associated with the City's sanitary sewer systems.

Title 13 – Public Services, Chapter 13.20 – Pretreatment and Regulation of Wastes (Ordinance No. 1094, adopted Nov. 7, 2017)

Describes the City's wastewater pretreatment ordinance that identifies and regulates certain facilities that have the potential to discharge undesirable pollutants that may interfere with or damage the WWTP, and/or pass through untreated into the environment. The ordinance incorporates the National Categorical Pretreatment Standards located in 40 CFR Chapter I, Subchapter N, Parts 405—471. Regulated users can include, but are not limited to industrial facilities, vehicle servicing facilities, water-softening wastes, food processing facilities, medical waste, spent solutions and sludge, and recovered pretreatment wastes.

All regulated users are noticed by the City to obtain an individual wastewater discharge permit before connecting to or discharging to the WWTP. Each permittee is required to comply with the provisions of the permit. The City may conduct inspections, monitoring, flow metering, sampling, collection of compensation, and enforcement procedures including cease and desist orders and permit revocation.

Title 13 – Public Services, Chapter 13.24 – Stormwater/Urban Runoff Management and Discharge Controls

Protects and enhances the water quality of watercourses, water bodies, groundwater, and wetlands in a manner pursuant to and consistent with the Federal CWA, the State Porter-Cologne Water Quality Control Act, and the conditions of any NPDES permit applicable to the City.

Title 16 – Subdivisions, Chapter 16.44 – Flood Control and Tract Drainage

Establishes the minimum facilities required for the control of tract drainage and floodwaters.

Title 16 – Subdivisions, Chapter 16.48 – Dry Sewers

Establishes that if a land division is filed that proposes a density of two or more lots per acres, and if connection to a wet sewerage system is not required, the installation of a dry sewer system may be required. Installation of the sewer mains, laterals and connections shall be completed prior to the installation of street improvements.

Title 17 – Zoning, Chapter 17.04.083 – Inclusion of Recycling Receptacles in Building Design

Establishes that office, commercial and retail, industrial and large-scale residential development projects shall include appropriately-sized receptacles for recyclable materials adjacent to trash containers in all common areas. Signs shall be posted to instruct users as to the proper separation of trash and recyclable materials.

City of Beaumont 2040 General Plan

Land Use and Design Element

Goal 3.2: A City that ensures the timely provision of services with phased development.

Policy 3.2.1 Ensure that there will be adequate water and wastewater system capacity to meet projected demand. Coordinate with BCVWD to ensure access to clean and adequate water supply.

Policy 3.2.2 Continue to implement comprehensive water and wastewater management programs and ensure that future developments pay their fair share for any needed infrastructure improvements.

Policy 3.2.3 Continue to oversee the development of adequate and dependable public services and facilities to support both existing and future development.

Implementation LUCD-6 Development Fees. Update citywide development impact fees for infrastructure, affordable housing, other community benefits, and long-range planning.

Goal 3.6: A City with active and comfortable places that encourage social interaction and community gathering.

Policy 3.6.3 Require project developers to establish mechanisms, such as a Community Facilities District, to adequately maintain new parks, recreational facilities, and infrastructure.

Implementation LUCD-13 Coordination of Development Plans and Infrastructure Funding. Phase development based on availability of infrastructure and only allow annexation to occur only when the full range of urban services is available or funded.

Goal 3.10: **A City designed to improve the quality of the built and natural environments to reduce disparate health and environmental impacts.**

Policy 3.10.7 Support practices that promote low impact development, including water resilient communities, prevention of urban runoff, and mitigation of industrial pollution.

Implementation LUCD-7 Development Fact Sheets. Create and promote a series of one-page fact sheets about permitting, zoning, building, and development requirements and questions. Incorporate sustainability practices related to building construction, site design, and renovation into materials.

Economic Development and Fiscal Element

Goal 5.9: **A community with sustainable and improved infrastructure.**

Policy 5.9.3 Support local businesses and economic development by improving Beaumont's infrastructure including well-maintained streets, transit improvements, adequate water and sewer services and communications infrastructure.

Implementation EDF35 Utility Services Benchmarking. Establish thresholds or standards for levels of service as a benchmark to evaluate adequacy of community and utility services.

Community Facilities and Infrastructure Element

Goal 7.1: **City-wide infrastructure to support existing development and future growth.**

Policy 7.1.1 Manage and upgrade the City's aging infrastructure, as funds allow, and leverage funds whenever possible.

Policy 7.1.2 Explore options available to attain sustainable funding levels for maintaining existing infrastructure in the City.

Policy 7.1.3 Require that new and existing development pay its fair share of infrastructure and public service costs.

Policy 7.1.4 Require developers to present a plan to provide adequate infrastructure and utility service levels before approving new development.

Implementation CFI1 Underground Infrastructure Mapping. Work collaboratively with regional utility agencies to adopt smart city technology to map underground infrastructure.

Implementation CFI5 Funding. Work with the Riverside County Flood Control and Water Conservation District to identify and pursue funding to support efforts that protect the Santa Ana Watershed.

Implementation CFI9 Area Drainage Plan. Develop an Area Drainage Plan with the Riverside County Flood Control and Water Conservation District to accompany the Beaumont Master Drainage Plan.

- Implementation CFI24** Sewer and Stormwater User Fees. Work with local and regional agencies to update existing user fees for sewer and stormwater, fund needed system upgrades, and to the extent feasible, allow for wastewater recycling and stormwater capture.
- Goal 7.2:** **A clean and sustainable water supply that supports existing community needs and long-term growth.**
- Policy 7.2.1** Work with BCVWD and SGPWA to ensure an adequate supply of potable water facilities to sustain existing and projected water needs.
- Policy 7.2.2** Coordinate with the BCVWD to ensure that adequate **water supplies and pressures are available during a fire, earthquake, or both.**
- Policy 7.2.3** Ensure adequate funding is available to maintain existing and future water facilities.
- Policy 7.2.4** Provide the Beaumont 2040 land use plan to the San Timoteo Subbasin Groundwater Sustainability Agency (GSA) for use in preparation of a Groundwater Sustainability Plan (GSP) for management of the San Timoteo Subbasin that is outside of the adjudicated boundary of the Beaumont Basin.
- Policy 7.2.5** Provide the Beaumont 2040 land use plan to the Beaumont Cherry Valley Water District to incorporate into their next UWMP and PWMP.
- Policy 7.2.6** Require developers to present a plan to provide adequate water infrastructure and supply levels before approving new development.
- Policy 7.2.7** Continue to optimize groundwater recharge from new and redevelopment projects by infiltrating stormwater in accordance with State, regional, and local requirements.
- Policy 7.2.8** Seek opportunities to incorporate groundwater recharge elements into City drainage projects and work with other agencies to implement regional groundwater recharge projects.
- Policy 7.2.9** Coordinate with the Beaumont Cherry Valley Water District to periodically assess, monitor, and manage the quality of groundwater.
- Policy 7.2.10** Review development proposals to ensure that adequate water supply, treatment, and distribution capacity is available to meet the needs of the proposed development without negatively impacting the existing community.
- Implementation CFI3** Adequate Water Supply for New Development. Require a Water Supply Assessment for new developments to ensure adequate water supply.
- Implementation CFI4** Water System Plans and Rate Study. Participate in the revision of the Urban Water Management Plan and Potable Water System Master Plan based on current requirements and policy.
- Goal 7.3:** **Buildings and landscapes promote water conservation, efficiency, and the increased use of recycled water.**

- Policy 7.3.1** Partner with BCVWD to promote and implement water conservation measures and reuse practices, including water efficient fixtures, leak detection, water recycling, greywater reuse and rainwater harvesting.
- Policy 7.3.2** When feasible, augment regional conservation programs with City resources to encourage reduced water use in homes and businesses.
- Policy 7.3.3** Support and engage in educational and outreach programs that promote water conservation and wide-spread use of water-efficient technologies to the public, homebuilders, business owners, and landscape installers.
- Policy 7.3.4** Support and implement third-party programs and financing sources, such as the PACE program, to improve water efficiency of existing buildings.
- Policy 7.3.5** Expand the supply of recycled water and distribution facilities in the City for irrigation at city facilities/parks/sports fields. When such supply is available, require new developments to utilize for their common irrigation needs.
- Policy 7.3.6** Encourage innovative water recycling techniques, such as rainwater capture, use of cisterns, and installation of greywater systems.
- Policy 7.3.7** Update and improve water conservation and landscaping requirements for new development.
- Policy 7.3.8** Require the use of recycled water for irrigation of parks and golf courses in Beaumont.
- Implementation CF12** Zoning and Implementation Ordinances. Update zoning and building codes to enable innovative sustainability measures such as:
- Greywater capture and reuse systems
 - On-site bioretention-based stormwater facilities
 - Coordinated below grade installation/repair between various providers and agencies
 - Wind generation on residential and commercial buildings
 - Electric vehicle infrastructure requirements
 - Green building performance standards
- Implementation CF17** Educational materials. Produce a City resource guide for commercial and residential water recycling techniques, including conservation strategies, landscaping, rainwater capture, greywater systems, and use of cisterns.
- Goal 7.4:** **Incorporate sustainable and improved stormwater management practices.**
- Policy 7.4.1** Incorporate low-impact development (LID) techniques to improve stormwater quality and reduce run-off quantity.
- Policy 7.4.2** Explore opportunities for “green streets” that use natural processes to manage stormwater runoff, when feasible.

- Policy 7.4.3** Require new development and redevelopment projects to reuse stormwater on-site to the maximum extent practical and provide adequate stormwater infrastructure for flood control.
- Policy 7.4.4** Use agency websites, public service announcements, and other means to inform the public about water quality issues, methods to prevent contaminants from entering the storm drain system, public stormwater pollution, and a system for reporting non-stormwater discharges to waterways. Some of these materials can be sourced from the Riverside County Flood Control and Water Conservation District.
- Goal 7.5:** **Manage and effectively treat storm water to minimize risk to downstream resources.**
- Policy 7.5.1** Ensure compliance with the National Pollution Discharge Elimination System (NPDES) MS4 permit requirements.
- Policy 7.5.2** Continue to work with co-permittees of the NPDES permit to promote public awareness of water quality issues.
- Policy 7.5.3** Minimize pollutant discharges into storm drainage systems, natural drainages, and groundwater. Design the necessary stormwater detention basins, recharge basins, water quality basins, or similar water capture facilities to protect water quality by capturing and/or treating water before it enters a watercourse.
- Policy 7.5.4** Require new development to fund fair-share costs associated with the provision of stormwater drainage systems, including master drainage facilities.
- Policy 7.5.5** Require hydrologic/hydraulic studies and WQMPs to ensure that new developments and redevelopment projects will not cause adverse hydrologic or biologic impacts to downstream receiving waters, including groundwater.
- Policy 7.5.6** Participate, when appropriate, in regional task force efforts in partnership with the Santa Ana Regional Water Quality Control Board, including but not limited to, the development and ongoing implementation of Total Maximum Daily Loads (TMDLs) and water quality sampling programs.
- Policy 7.5.7** Pursue grant funding and partnership opportunities for stormwater capture and/or restoration projects.
- Policy 7.5.8** Continue to routinely monitor and evaluate the effectiveness of the storm drain collection and conveyance system and adjust as needed. This may include retrofitting for enhanced infiltration.
- Policy 7.5.9** Continue to monitor influent rates at the wastewater treatment plant as new development projects are proposed, and coordinate treatment capacity expansion as needed.

- Policy 7.5.10** Seek opportunities to integrate stormwater facilities into public spaces as architectural design elements. Include informational and educational signs to raise public awareness of water use and water pollution issues.
- Implementation CF18** Low Impact Development. Develop standards to:
- determine where Low Impact Development techniques are appropriate and can incorporate best management practices.
 - identify and eliminate barriers to incorporate watershed protection principles.
- Implementation CF19** Green Streets. Implement best practices for Green Streets on transportation corridors associated with new and existing redevelopment projects.
- Implementation CF21** Local Implementation Plan. Prepare a Local Implementation Plan (LIP) that documents the internal procedures for implementation of the various program elements described in the Drainage Area Management Plan and Regional Water Quality Control Board - Santa Ana Region Order No. R8-2010-0033 ("MS4 Permit").
- Implementation S23** Update Municipal Code. Update municipal code to require:
- on-site stormwater runoff retention
 - limit stormwater runoff impacts on adjacent properties
- Goal 7.6:** **A zero-waste program that increases recycling and reduces waste sent to the landfill.**
- Policy 7.6.2** Expand programs to collect food waste and green waste from commercial and residential uses.
- Policy 7.6.4** Ensure waste facilities and infrastructure are designed to be safe and compatible with adjacent uses.
- Policy 7.6.5** Ensure construction demolition achieves the State's 50 percent target for material salvage and recycling of non-hazardous construction materials.
- Policy 7.6.6** Promote waste reduction, recycling, and composting by making separate containers available in gathering areas of City-owned facilities.
- Policy 7.6.7** Continue to work with regional agencies to educate residents about available drop-off and/or pickup points for e-waste and hazardous materials and chemicals, to avoid disposal into the sewer system, waste stream, or open space areas.
- Implementation CF25** Food Recovery Program. Work with local organizations and restaurants to develop a food rescue program that distributes edible food to low-income residents and promotes food waste prevention.
- Implementation CF26** Zero Waste. Work with regional partners, such as the Riverside County Department of Waste Resources, and community partners to foster a zero

waste culture, including outreach, marketing, and local grant program to support efforts.

Implementation CFI27 Public Stewards of Zero Waste. Commit all City departments to zero waste, including provision of technical support and diversion at City facilities.

Implementation CFI30 Composting Program. Expand existing recycling programs to include composting yard and garden waste.

Goal 7.7: **Provide for a clean and healthy community through an effective solid waste collection and disposal system.**

Policy 7.7.1 Implement source reduction, recycling, composting, and other appropriate measures to reduce the volume of waste materials entering regional landfills. Establish a goal to achieve 100 percent recycling citywide for both residential and nonresidential development.

Policy 7.7.2 Implement a commercial solid waste recycling program that consists of education, outreach, and monitoring of businesses in order to divert commercial solid waste and report progress in the annual report to CalRecycle.

Policy 7.7.3 Require businesses (including public entities) that generate four cubic yards or more of commercial solid waste per week, or a multifamily residential dwelling of five units or more, to arrange for recycling services.

Policy 7.7.4 Offer economic incentives to businesses within the City which are “zero waste.”

Policy 7.7.5 Develop City programs and/or advertise County-wide programs that encourage residents to donate or dispose of surplus furniture, old electronics, clothing, oils/grease, household hazardous materials and other household items rather than disposing of such materials in landfills.

Implementation CFI28 Technical Assistance. Partner closely with commercial and owners of multifamily properties to start or expand recycling and waste reduction practices.

Implementation CFI29 Debris Recycling Ordinance. Create a construction and demolition debris recycling ordinance to support the diversion of recyclable and recoverable materials. Work with local partners to conduct outreach targeting waste generators.

Goal 7.8: **City-wide access to high-quality energy utility and telecommunication services.**

Policy 7.8.1 Ensure that adequate utility and telecommunication infrastructure support future development.

Policy 7.8.3 When feasible, place new utilities underground to promote attractive neighborhoods and streetscapes and reduce wildfire risk.

Policy 7.8.4 Consider aesthetic design, including well maintained grounds and fencing around substations.

Policy 7.8.5 Ensure that siting of telecommunication facilities provides efficiency and quality services to emergency response providers in the City.

Policy 7.8.6 Work with Southern California Edison to encourage joint use of the power line corridors.

Implementation CF131 Telecommunication Siting. Establish siting parameters to minimize community impacts, including demonstration of compliance with federal safety standards, low-profile designs, co-location (where feasible), and minimum setbacks from residences.

Implementation CF132 Fiber Optic Communications. Work with regional and state partners to support fiber optic market development and Beaumont's participation in the statewide diffusion of fiber optic technology.

Safety Element

Goal 9.10: **A City that is prepared for the potential impacts of climate change.**

Policy 9.10.3 Require enhanced water conservation measures in new development and redesign of existing buildings to address the possibility of constrained future water supplies, including:

- Compliance with existing landscape conservation ordinance (Chapter 17.06 of the Municipal Code).
- Use of water conservation measures in new development beyond current requirements.
- Installation of recycled water use and graywater systems.

Implementation S7 Community Risk Assessment. Conduct a community risk assessment to identify critical facilities and community assets.

Implementation S8 Climate Change Risk Assessment. Conduct a climate change risk assessment to identify potential risks and vulnerable populations. Prioritize programs and funding for populations most likely to be impacted by climate change, in accordance with SB379.

Implementation S10 Community Preparedness Toolkit. Adopt a local Community Preparedness Toolkit that can be used to prepare for disasters, including fires, earthquakes, and extreme heat events.

Implementation S11 Maintenance Fund. Re-evaluate development impact fees to cover costs of maintaining community fire breaks and other similar activities.

Implementation S28 Water Conservation. Review Chapter 17.06 of the Municipal Code to consider adding additional water conservation measures.

4.17.4 Impact Thresholds and Significance Criteria

State CEQA Guidelines, Appendix G contains the Environmental Checklist Form, which includes questions concerning utilities and service systems. The questions presented in the Environmental Checklist Form have been utilized as significance criteria in this section. Accordingly, the Project would have a significant effect on the environment if it would:

- Require or result in the relocation or construction of new or expanded water, wastewater treatment, or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects;
- Have sufficient water supplies available to serve the Project and reasonably foreseeable future development during normal, dry and multiple dry years;
- Result in a determination by the wastewater treatment provider which serves or may serve the Project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments;
- Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals; or
- Comply with federal, state, and local management and reduction statutes and regulations related to solid waste.

Methodology and Assumptions

The proposed Project is evaluated against the aforementioned significance criteria/thresholds, as the basis for determining the impact's level of significance concerning utilities and service systems. This analysis considers the existing regulatory framework (i.e., laws, ordinances, regulations, and standards) that avoid or reduce the potentially significant environmental impact.

Approach to Analysis

This analysis of impacts on utility resources examines the Project's temporary (i.e., construction) and permanent (i.e., operational) effects based on application of the significance criteria/thresholds outlined above. For each criterion, the analyses are generally divided into two main categories: (1) temporary impacts; and (2) permanent impacts. Each criterion is discussed in the context of Project components that share similar characteristics/geography. The impact conclusions consider the potential for changes in environmental conditions, as well as compliance with the regulatory framework enacted to protect the environment.

The baseline conditions and impact analyses are based on the following: technical assessments provided by the BCVWD utility agency; review of project maps and drawings; analysis of aerial and ground-level photographs; and review of various data available in public records, including local planning documents. The determination that the Project would or would not result in in "substantial" adverse effects on utilities or service systems is based on the capacity of those systems and their ability to efficiently accommodate the Project's development into their infrastructure, as well as the Project's compliance with all relevant regulations and policies. An example of a substantial adverse effect would be if utility systems needed to

expand, or new facilities needed to be built to accommodate the Project. Unsubstantial effects would not require existing utility systems to facilitate the Project through large modifications.

4.17.5 Impacts and Mitigation Measures

Impact 4.17-1 Would the Project require or result in the relocation or construction of new or expanded water, wastewater treatment, or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Level of Significance: Less than Significant Impact

Water Facilities

As part of the Project, and as analyzed in this document, water services would be extended into and within the Project site as a part of the proposed improvements. Within the Project Site, all potable and recycled water delivery lines would be designed, to the satisfaction of the City Engineer and BCVWD; and would be coordinated with existing water systems serving any neighboring development. Although non-potable water service is not currently available, the proposed Project includes the improvements within the site so that it may be able to be served in the future. All water systems constructed within the Project site and connections to the municipal water system would comply with City-stipulated water system design, construction, and operational requirements. This would act to ensure water systems are properly designed, implemented, operated, and maintained; thereby furthering efficiency and adequacy of facilities while reducing facilities life cycle costs.

The Project site would tie into an existing 24-inch water line located within Brookside Avenue via a new waterline from the south side of the Project site along the eastern edge of Planning Area 3. All impacts associated with installation of the new water lines (potable and non-potable) would occur within areas already proposed to be disturbed as part of the Project, and within areas such as roadways and utility easements that were previously disturbed and paved, and that have been planned for tie ins from new development and to provide services.

Water Use

The Project would allow for up to a maximum of 2,707,465 SF of mixed commercial, e-commerce, and office uses and approximately 31 acres of open space. The WSA estimated the proposed Project's water demands to be 183 AFY, or approximately 66 percent less water demand is anticipated compared to the previously approved Sunny-Cal Specific Plan on the same property footprint of 531 AFY with 560 DUs, and this is commensurate with the number of EDUs that the BCVWD assumed for buildout of the property and its water demands projections in the 2020 UWMP.⁶ Although the Project site currently uses little to no water use, the proposed Project would have a planned water use of approximately 183 AFY which is a reduction of approximately 66 percent compared to the previously approved Sunny-Cal Specific Plan development which as previously stated would have generated a need of 531 AFY of water use. Because the water supplier's water demand projections assumed a higher development density based on a

⁶ Albert A. Webb Associated. (2021). Water Supply Assessment. Page 2-10.

previously approved project, than that which is proposed by the Project for the same property, it can be deduced that the water demand for the Project would result in a net decrease in potable water demand.

The proposed Project is comprised of three Planning Areas (PAs) and would require water for consumptive, sanitary, and operational purposes to support employees at the facility and for irrigation of landscaped areas.

According to the WSA, it is anticipated that the new water demand created by the Project would not exceed the City's anticipated water supply. Furthermore, the Project will demonstrate consistency with the City Landscaping Standards located in the Beaumont MC Chapter 17.06, which require efficient systems and plants with low-water demands. Project water demand and each accompanying PA includes:

- PA 1: The potable water demand factor is 15 GPD/employee, with the number of employees sourced from the Project's traffic study (2,011 in Planning Area 1). This is slightly higher than an estimate using the oft-cited 2010 National Association of Industrial and Office Properties (NAIOP) study.⁷ Potable water demand in PA 1 is measured over 365 operating days per year, which is more than the 260 days used in certain other BCVWD WSA's and a 2010 U.S. Department of Energy Study (USDE, 2010). The non-potable (landscaping) water demand factor is 1,835.6 GPD/acre (or 670,000 gallons per year per acre) and 365 days per year.⁸
- PA 2: Potable water demand factors used are 100 GPD/hotel room assuming 220 rooms, 1 GPD/SF (or 1,000 GPD/kSF) for "general retail" and "food uses." These unit water demand factors consistent with those used in the 2021 BCVWD Beaumont Pointe WSA which states they are "based on typical water usage used by water agencies throughout southern California." The landscaped area for PA 2 (i.e., 1,835.6 GPD/acre). Both potable and non-potable water demand in this PA is assumed to be in use 365 per year.
- PA 3: Because it is planned as passive open space. According to the Office of the Fire Marshal who was consulted during preparation of the WSA, the Project site does not fall within the Very High Fire Hazard Severity Zone; therefore, no fuel modification zone would be required by the fire department. Because it is planned as passive open space and no fuel modification zone would be required, the water demand was assumed to be zero.

As stated above, potable water demand is estimated at 183 AFY (114 AFY and non-potable water demands is 69 AFY). Based on these figures and based on the evaluation of water demand from the previously approved Specific Plan, water demand from the proposed Project would not result or require the relocation or construction of new or expanded water facilities which could cause significant environmental effects beyond the scope and scale of those already evaluated. These impacts would be less than significant.

⁷ Hidden Canyon Industrial Park (2019, p. 112) and Beaumont Pointe Water Supply Assessments (Mar. 2021, p. 12), based their employee counts on a 2010 NAIOP Research Foundation study (NAIOP), which is 1 employee per 1,500 SF of warehouse and office space.

⁸ This is the same factor used for the Beaumont Pointe Water Supply Assessment (2021, p. 12).

Wastewater

Refer to Impact 4.17-3, below for additional information on wastewater service. As previously discussed, sewer service would be provided by the City of Beaumont, with treatment provided by the Beaumont WWTP No. 1. The WWTP is located within BCVWD's service area and has been upgraded and expanded to include the ability to produce recycled water for distribution⁹. Based on the relatively low wastewater generation rates of e-commerce and commercial uses that would be implemented within the Project area, development would result in nominally increased wastewater treatment demands compared to the two mgd of increased treatment capacity. The County of Riverside uses an average wastewater generation rate of 1,200 gpd per acre for commercial uses.¹⁰ The approximately 150-acre building area of the e-commerce and commercial PAs would therefore generate 180,000 gpd. This total would comprise less than one percent of the two mgd increased treatment capacity. The WWTP would have sufficient wastewater treatment capacity to serve the proposed Project as the undergoing upgrades would allow for an increase in treatment capacity. Therefore, the Project would not trigger the need for new or expanded regional wastewater treatment facilities and/or exceed capacity. In addition, the Project applicant would be required to pay standard BCVWD sewer connection fees, which are used to fund wastewater treatment and regional wastewater conveyance improvements associated with new development. As such, impacts in this regard would be less than significant.

Regarding the wastewater collection systems and proposed connections to the municipal wastewater collection system, Project facilities would be designed and installed in conformance with the City stipulated wastewater system design, construction, and operational requirements. This would ensure wastewater collection facilities are properly designed, implemented, operated, and maintained; thereby furthering efficiency and adequacy of facilities while reducing facilities lifecycle costs.

The Project applicant also would pay fees pursuant to the incumbent City of Beaumont Fee Schedule. These fees would cover the City's cost to fund plan review, coordination, and inspection of proposed wastewater collection system improvements. The Project applicant would be responsible for any capital costs to extend the existing sewer lines, as well as applicable sewer connection and service fees, which act to fund future improvement plans, operations, and maintenance of existing wastewater collection facilities. As previously discussed, the Project sewer infrastructure would be a gravity system placed in drive aisles and the central private drive and connecting with a proposed sewer line in Brookside Avenue (see **Exhibit 3.0-10 in Section 3.0, Project Description**). An approximately 488 feet long proposed sewer line is to be installed just southeast of the site along Brookside Avenue to an existing sewer line located at Morgan Avenue.

Therefore, the Project would have little or no net effect on the operation of wastewater collection facilities or wastewater treatment capacity. Impacts would be less than significant, and mitigation is not required.

⁹ Albert A. Webb Associates. 2021. *Water Supply Assessment*, page 3-12.

¹⁰ County of Riverside. (2015). *County of Riverside Environmental Impact Report No. 521. Table 4.19-BL*. Page 4.19-287. Riverside, CA: County of Riverside

Stormwater

The Project's drainage plan will collect stormwater through catch basins placed throughout the Specific Plan area. Stormwater will be discharged into a series of above and below-ground detention basins to reduce flows and to provide treatment prior to being discharged into the existing stream course in PA 3.

On-site runoff will be conveyed through the site via proposed curb and gutters, and ribbongutters. Runoff would be collected via a network of inlets provided at low point throughout the Project site and conveyed via underground storm drain towards the proposed water quality treatment facilities. For the Building 1, stormwater will be conveyed to an underground detention basin that will have limited infiltration ability. Stormwater will then be pumped at a reduced flow rate to a biofiltration basin to further cleanse the water before draining into the proposed infiltration basin for Building 2. Only after the stormwater from Building 2 has infiltrated, will stormwater from Building 1 be pumped from the underground detention basin. Stormwater runoff from the BSS - Building 2 site would be treated in a proposed infiltration basin. Stormwater runoff from Building 3 will be conveyed to an underground detention basin that will have limited infiltration ability. Stormwater will then be pumped at a reduced flow rate to a biofiltration basin to further cleanse the water before draining into the natural drainage system downstream of the project site.

Due to the lack of downstream storm drain facilities, the Project site would be required to mitigate for increases in runoff. For Buildings 1 and 3, a CMP detention chamber system would be constructed for each site. The CMP detention chamber system would be pumped out at a reduced discharge rate to mitigate for the increased runoff. The proposed infiltration basin in the Building 2 site would serve to treat for water quality requirements and mitigation along with a proposed CMP detention system which would equalize with the basin. The proposed mitigation systems for each Building project site have been sized to mitigate for increased runoff for the 2-year, 5-year, and 10-year storm events with a duration of 24 hours. Refer to **Section 4.9, Hydrology and Water Quality**, for additional information.

The proposed site plan and building layouts do not allow for the same tributary drainage areas to each of the south and west discharge points. To maintain existing outlet conditions, portions of the site would be required to over mitigate to ensure the downstream facilities are not adversely impacted. The total flows from both discharge points will drain to the west and would not be in excess of pre-Project flows. As such, less than significant impacts would occur.

Electric Power

SCE provides basic electrical service for all residential and nonresidential customers within the City and would provide electricity to the proposed Project. There are no under-served areas within the City and are no significant constraints that would make it infeasible to provide electric service needed for the proposed Project. Underground power is available to most service areas, with lines situated along several of the major streets. As part of the Project development, electricity lines and other junctions (as needed) would be extended into the Project site in areas already proposed for disturbance. The proposed Project would tie into existing utility lines in existing roadways or other easements that have already experienced disturbances or that were anticipated for such use. The proposed Project would not require the

construction or unanticipated relocation of electric power facilities resulting in unanticipated environmental effects. Additionally, the Project would not require a substation for electrical power, per SCE. Impacts would be less than significant, and mitigation is not required.

Natural Gas

SoCalGas provides basic residential and business gas services. There are no underserved areas, and SoCalGas does not foresee any constraints to substantial future development within the City. Natural gas services for the Project will be provided by underground pipes to distribute the gas within the Project area. These pipes are not existing and would therefore require trenching to place them. However, this can be done in conjunction with the construction of roads or other ground disturbing activities such as laying foundations or sewer systems. Therefore, the installation of natural gas infrastructure would not create an increased impact on the environment.

Telecommunication

Verizon provides home and business phone service, as well as offering fiber optics capabilities. Video and data lines are also possible for each residence via an existing network. There are currently no under-served areas.

Telecommunication facilities would be provided to the Project site by Verizon. Verizon would connect the Project site to existing telecommunication facilities, which are in the vicinity of the Project site. Less than significant impacts would occur.

Mitigation Measures

No mitigation is necessary.

Level of Significance

Less than significant impact.

Impact 4.17-2 Would the Project have sufficient water supplies available to serve the Project and reasonably foreseeable future development during normal, dry, and multiple dry years?

Level of Significance: Less than Significant Impact

Estimated Project Demand

Development of the proposed Project would increase water consumption compared to existing conditions. The BCVWD 2020 UWMP identifies water supply and delivery systems to serve the City's incorporated and areas in the SOI, which includes the Project site. The UWMP evaluates water demands through the year 2045. Through 2045, BCVWD is anticipated to have adequate water supply to meet current demand, the increased demands for the proposed Project, and water needed for other anticipated growth. It should be noted that BCVWD's anticipated water use and demand for imported water are accounted for and included in SGPWA's water demand forecasts. The adequate supply is dependent on

the anticipated availability of recycled water as planned, and the planned SGPWA water supply projects are finalized, and water banking.

BCVWD would use some of the imported water to recharge groundwater and use this bank water to provide in times of shortfall. The Beaumont Basin, which has a large storage capacity is used by BCVWD as a water source. BCVWD and other agencies in the San Gorgonio Pass Area bank imported water during wet years for use during extended droughts. Complementing the large storage capacity is the fact that percolation and recharge occur at relatively high rates. BCVWD also focuses on maintaining well-managed groundwater levels.

As discussed above, the WSA projected water demand of the proposed Project at 15 gallons per person per day, which is consistent with other BCVWD WSA's in City. The estimated number of employees, 2,011, was derived from the Project Vehicle Miles Traveled (VMT) analysis. This would result in a water demand of approximately 34 AFY. Total Project water demand is 183 AFY (114 AFY for potable indoor water and 69 AFY for non-potable irrigation water).¹¹

Water demand for landscaping also was calculated and would require approximately 69 AFY or 61,296 gpd. This was based on using drought tolerant landscaping and a cap the City placed on water availability for landscaping. Recycled water is not currently available but would be evaluated for use for landscaping when it is available at the Project site.

Normal Year

Although, available water supplies are dependent on local climate conditions, BCVWD estimates in its 2020 UWMP that the customer water demand and available water supply from 2025 to 2045 are at least equal during “normal” precipitation years and there will be water available for banking in the Beaumont Basin. This is consistent with what occurred in 2020; supply met demand with 427 AF going to banked groundwater storage. With BCVWD's total potable and non-potable water supply and demand BCVWD would be able to meet water demands for the proposed Project. A summary from the 2020 UWMP of the normal year water supplies projected to be available to BCVWD, as well as the normal year water demand projections are compared in **Table 4.17-3**, below.

Table 4.17-3: BCVWD Projected Normal Year Supply and Demand (AFY)

	2025	2030	2035	2040	2045
Supply	18,565	18,478	23,175	24,738	26,270
Demand	16,929	17,873	18,869	19,846	20,660
To Beaumont Basin Storage	1,636	605	4,306	4,892	5,610

Source: Water Supply Assessment, 2021. Table 3-6, page 3-13. (Appendix I).

As shown in **Table 4.17-3**, BCVWD has estimated that sufficient supply will be available during any normal year occurring between 2020 and 2040.

¹¹ WSA. 2021. Spreadsheet 1.

Dry Years

The availability of water, both locally, regionally, and statewide, are dependent on climate and volumes of precipitation. This is true for both BCVWD and imported that is available from the SGPWA via the SWP. Accordingly, depending on weather and rainfall patterns the availability of water can change dramatically. To account for these variances and evaluate potential impacts to water resources over long periods of time, CEQA requires a project be evaluated based on the normal, single, dry, and multiple dry years. The WSA prepared for the proposed Project was evaluated based on the following dry year scenarios:

- A single-dry year for BCVWD corresponds to the conditions observed in 1991, which is when the minimum amount was extracted from Edgar Canyon groundwater, which was 1,117 AF;
- A reduction of 15 percent is assumed for average annual forbearance water and reallocated unused Overlying Party rights (i.e., water used for replenishment of Beaumont Basin account) will be available in a dry year (i.e., 85 percent of normal);
- Future return flow credits were not reduced by 15 percent for a single-dry year.
- A reduction of 15 percent is assumed for recycled forbearance water due to a potential reduction in treated wastewater due to water conservation (i.e., 85 percent of normal).
- 5 percent of Table A water will be available to SGPWA for BCVWD's estimated available imported water supplies.
- 90 percent of the expected normal, average recycled water will be available;
- 36 percent of average rainfall will be available as new water from stormwater capture projects;
- No reduction in water demand was assumed

BCVWD has determined with these assumptions that sufficient water supplies will be available during a single dry year occurring anytime from 2025 to 2045, as shown in **Table 4.17-4**.

Table 4.17-4: BCVWD Projected Single Dry Year Supply and Demand (AFY)

	2025	2030	2035	2040	2045
Supply	7,349	7,878	8,944	9,195	9,792
Demand	15,429	16,673	18,097	19,124	19,988
From Banked Beaumont Basin Storage	(8,080)	(8,795)	(9,153)	(9,929)	(10,196)

Source: Water Supply Assessment, 2021. Table 3-7, page 3-15. ([Appendix I](#)).

Multiple Dry Year

BCVWD has made the following assumptions in its UWMP to estimate future water supplies and demands during a multiple (five-consecutive) year drought:

- A five-dry year period of BCVWD corresponds to the conditions observed from 1988 to 1992
- The average amount available from Edgar Canyon groundwater for 5 consecutive dry years is 1,305 AF

- 85 percent of average annual forbearance water and reallocated unused Overlying Party rights (i.e., water used for replenishment of Beaumont Basin account) will be available in a dry year (a reduction of 15 percent);
- Future return flow credits were not reduced by 15 percent for a dry year;
- 85 percent of recycled forbearance water will be available for a potential reduction in treated wastewater due to water conservation (a 15 percent reduction);
- 24 percent of Table A water will be available to SGPWA for BCVWD's estimated available imported water supplies;
- 85 percent of the expected normal, average recycled water will be available;
- 61 percent of average rainfall will be available as new water from stormwater capture projects;
- Total water demand will be reduced 30 percent

BCVWD has projected based on the assumptions above that sufficient water supplies will be available with the use of banked groundwater supplies during each year of a five-year drought that could occur anytime from 2025 to 2045, shown in **Table 4.17-5**.

Table 4.17-5: BCVWD Projected Multiple Dry Year Supply and Demand (AFY)

		2025	2030	2035	2040	2045
Five Consecutive Dry Years	Supply	10,639	10,697	11,456	11,331	11,642
	Demand	10,800	11,671	12,668	13,387	13,992
	From Banked Beaumont Basin Storage	(162)	(974)	(1,212)	(2,056)	(2,350)

Source: Water Supply Assessment, 2021. Table 3-8, page 3-16. (Appendix I).

In addition, the WSA concluded that SGPWA has projected in its 2020 UWMP to have reliable water supplies through the 2045 planning horizon year to meet SGPWA's current and 2045 future water demands in its service area during normal and average rainfall years, during a five-year drought from 2021 to 2025, as well as a five-consecutive year drought between 2025 and 2045. SGPWA's water reliability assessment for a drought lasting five consecutive years shows sufficient available supplies assuming the retail agencies in SGPWA service area use stored water and regionally managed supplies to offset fluctuations in its SWP supplies.¹² According to the WSA, BCVWD can rely on the SGPWA to secure and deliver the imported water needed to meet BCVWD's current and future demands.

While it is anticipated sufficient water supply will be available, it should be noted that not all of those water supplies are firm with agreements in place. Beyond 2025, SGPWA and BCVWD would rely on the reliability of SWP water, the availability of Article 21 and Turnback Pool Water, short term water transfers which are not yet agreed to, and the Delta Conveyance Project (DCP) and Sites Reservoir. Both DCP and Sites Reservoir are moving forward, and there is more than reasonable probability these projects will

¹² Water Supply Assessment, 2021, Page 3-4.

come to fruition. While there is some risk, which BCVWD believes is low, that the projects would not continue, the risk will decrease over time as design and permitting progress.

Further, SGPWA is anticipated to be able to obtain sufficient imported water supply to supplement local supplies to meet regional needs including BCVWD's needs, and those of the proposed Project. The proposed Project was planned for in BCVWD's 2020 UWMP which demonstrated adequate water supplies up to the year 2045. BCVWD also identified recycled water from the City for non-potable water irrigation with a plan for the recharge of surplus recycled water with appropriate treatment and permits, which would reduce demands for potable water. This also would assist lowering water demands during critical and multiple dry year reliability analysis demonstrated that BCVWD will be able to meet BCVWD's existing demands during those times and also would supplement the existing supply sources during these dry periods with banked water in BCVWD's Beaumont Basin Groundwater Storage Account.

Therefore, pursuant to the CGC § 66473.7, (SB 221) and § 10910 of the California Water Code (SB 610), BCVWD would have sufficient currently available and planned supplies exist to meet the water demands of the proposed Project in addition to the existing and other projected demands during normal, single dry and multiple dry years over the next 20 years. Accordingly, BCVWD has determined that it has sufficient and adequate water supply available to serve long-term needs of the Project in addition to the existing and other projected demands during normal, single dry and multiple dry years over the next 20 years.

Mitigation Measures

No mitigation is necessary.

Level of Significance

Less than significant impact.

Impact 4.17-3 Would the Project result in a determination by the wastewater treatment provider, which serves or may serve the Project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Level of Significance: Less than Significant Impact

There are no existing or proposed sewer facilities within the immediate vicinity of the Project site. Existing 15-inch sewer lines are in a subdivision to the south of Brookside Avenue, flowing under I-10, and ultimately to the City's Wastewater Treatment Plant No. 1, located on Fourth Street, east of Viele Avenue. Sewer infrastructure will be a gravity system placed in drive aisles and the central private drive and connecting with a proposed sewer line in Brookside Avenue, as depicted in **Exhibit 3.0-10, Conceptual Sewer Plan**). Wastewater from the Project site would then flow to be treated at the City's Treatment Plant No. 1. Currently, the City's WWTP No. 1 is undergoing upgrades that would expand the current permitted capacity from 4 mgd to 6 mgd, as well as construction of advanced treatment, lift station modifications, and the addition of on-site recycled water storage facilities. The treatment upgrades include a new fine screen system, conversion to activated sludge, a new activated sludge pump for secondary clarification, and a new membrane bio-reactor, with a reverse osmosis system to remove dissolved solids. Additionally,

new dewatering equipment and optimization of the existing ultraviolet disinfection system¹³. Based on the wastewater generation rates of e-commerce and commercial uses that would be implemented within the Project area, development would result in nominally increased wastewater treatment demands compared to the 2 mgd of increased treatment capacity. The City's Wastewater Treatment Plant No. 1 would have sufficient wastewater treatment capacity to serve the proposed Project as the undergoing upgrades would allow for an increase in capacity. Therefore, the Project would not trigger the need for new or expanded regional wastewater treatment facilities and/or exceed capacity. In addition, the Project applicant would be required to pay standard BCVWD sewer connection fees, which are used to fund wastewater treatment and regional wastewater conveyance improvements associated with new development. As such, impacts in this regard would be less than significant.

Furthermore, wastewater collection systems and proposed connections to the municipal wastewater collection system would be designed and installed in conformance with the City stipulated wastewater system design standards, construction, and operational requirements. This ensures wastewater collection facilities are properly designed, implemented, operated, and maintained; thereby furthering efficiency and adequacy of facilities while reducing facilities lifecycle costs.

The applicant also would pay fees pursuant to the incumbent City Fee Schedule. These fees would cover the City's cost to fund plan review, coordination, and inspection of proposed wastewater collection system improvements. The applicant would be responsible for any capital costs to extend the existing sewer lines, as well as applicable sewer connection and service fees, which act to fund future improvement plans, operations, and maintenance of existing wastewater collection facilities. Therefore, the Project would have little or no net effect on the operation of wastewater collection facilities or wastewater treatment capacity. Impacts would be less than significant, and mitigation is not required.

Mitigation Measures

No mitigation is necessary.

Level of Significance

Less than significant impact.

Impact 4.17-4 Would the Project generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?

Level of Significance: Less than Significant Impact

The City is in the service area of the Lamb Canyon Landfill, located just south of the City and operated by the RCDWR. Therefore, the City will provide solid waste management services for the Project. Solid waste services within the City are contracted by WM for weekly trash, green waste and recycling curbside service. The City's agreement with WM includes a tipping fee for the County's costs to operate the

¹³ Beaumont-Cherry Valley Water District. (2021). 2020 Urban Water Management Plan Draft. Retrieve from: https://bcvwd.org/wp-content/uploads/2017/09/2020_BCVWD_UWMP_DRAFT.pdf. Accessed on July 20, 2021.

Lamb Canyon landfill. The Project will also be served by WM. Solid waste generated from the Project would be collected by WM, with the bulk of recyclable waste and green waste delivered to the Moreno Valley Solid Waste Recycling and Transfer Facility (MVTs) for processing. The MVTs is located at 17700 Indian Street in Moreno Valley. It is permitted for a 2,500-tpd operation.

Recently, RCDWR estimated in its Annual Report Summary to CalRecycle, pursuant to the Countywide Integrated Waste Management Plan, that the County's disposal facilities will provide approximately 20 years of disposal capacity, based on current and future disposal. Based on the Calrecycle website, there are various waste disposal generation factors for industrial and commercial uses. Some of the generation factors are based on the number of employees and others are based on the square footage of the facility. The Project would primarily be used for mixed commercial, e-commerce, and office uses. Commercial development may contain a variety of uses, including hotel, general retail, and food services. These uses could potentially produce new goods and therefore, waste generation compared to more production oriented industrial uses that use raw materials to make products would be more. Based on these factors, an estimated waste generation rate of 5 lbs./1,000 sf of facility from the Calrecycle website was used.¹⁴

The proposed Project is vacant and solid waste would initially be generated as construction debris. At the end of Project buildout, construction debris would stop being generated. Remnant construction debris including wood products, metals, and concrete and paving would be recycled or reused when possible. Operational waste would be generated from business operations and green waste from landscaping. Based on the listed generation rate, the approximately 2,707,465 square feet mixed commercial, e-commerce, and office uses is anticipated to generate approximately 13,537 lbs. (2,707,465/1,000*5) of waste per day or 7 tons per day (tpd). The Project would not generate solid waste in excess of the capacity of local infrastructure. The proposed Project would not impair the attainment of solid waste reduction goals.

As discussed above, solid waste would likely be primarily disposed of at the Lamb Canyon Land Fill facility. Green waste can also be transported to this facility where it is sorted and then transferred for disposal. Based on the anticipated tonnage generated, the proposed Project would contribute a negligible volume of waste, approximately 0.03 percent of existing daily disposal. In addition, the other two landfills available for use, the Badlands Landfill and Sobrante Landfill, can accept up to 4,800 tpd and up to 7,000 tpd, respectively. If these facilities are used, the proposed Project would make a similarly slight contributions.

Solid waste created by the Project would be collected and handled in compliance with all applicable regulation including those in Beaumont MC § 8.12.100 – Disposal of Solid Waste Required. To help reduce the waste stream, the Beaumont MC Chapter 8.12 details the City's waste management policy which includes requirements and strategies to reduce solid waste and increase the amount of material that is recycled.

¹⁴ Commercial Sector Generation Rates. (2019). Retrieved from: <https://www2.calrecycle.ca.gov/wastecharacterization/general/rates>. Accessed on July 20, 2021.

The proposed Project also would follow the state requirements related to reducing and recycling of the waste stream and comply with ABs 341 and 1826 by implementing a recycling program to separate recyclable, and recyclable organic materials, from non-recyclable solid waste and coordinating with the respective waste hauler(s) to have it disposed of at a proper facility. This also would satisfy other state requirement related to large scale businesses such as the proposed Project to maintain recycling and organics recycling programs. These requirements are designed to move California to its statewide goal of a 75 percent recycling rate, including a reduction in the level of organic waste disposal by 50 percent from its current levels. To help ensure businesses comply with the City's ordinance and state laws, the City's franchise waste hauler, WM, offers source separated recyclables, green waste, and food waste collection services. Therefore, the proposed Project would implement all required waste reduction strategies and the existing landfills have adequate capacity to serve the proposed Project. Impacts in this regard would be less than significant and mitigation is not required.

Mitigation Measures

No mitigation is necessary.

Level of Significance

Less than significant impact.

Impact 4.17-5 Would the Project comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

Level of Significance: Less than Significant Impact

Refer to Impact 4.15-4, above. Project development would comply with all federal, state, and local statutes and regulations related to solid waste. The Project does not propose any activities that would conflict with the applicable programmatic requirements. Therefore, impacts would be less than significant.

Mitigation Measures

No mitigation is necessary.

Level of Significance

Less than significant impact.

4.17.6 Cumulative Impacts

Future projects in the area would incrementally increase water demand, wastewater generation, solid waste generation and decrease available capacity of the landfills in the area. However, as with the Project, these projects have been, or would be, required to conduct environmental review. The BCVWD and SGPWA UWMP's account for growth in the City and Region and have found adequate water supplies exist. Similarly, the Project would be served by existing and planned wastewater and stormwater facilities. Additionally, based on BCVWD's focus on groundwater recharge and the placement of the retention

basins on the Project site, it is anticipated that at least some of the wastewater generated from the Project and much of the stormwater would be used for this purpose. Furthermore, as of 2015, the Lamb Canyon Land Fill facility was processing an average of 5,000 tpd and has a remaining capacity of 19,242,950 cubic yards. Therefore, while the Project would incrementally increase demands on public utilities, the increases are within the anticipated growth patterns and within the capacity of existing and planned resources. The Project would not combine with other cumulative projects to result in significant impacts to utilities and service systems. The Project's contribution is not considered cumulatively considerable.

4.17.7 Significant Unavoidable Impacts

No significant unavoidable impacts have been identified.

4.17.8 References

Albert A. Webb and Associates. August 2021. *Preliminary Drainage Study*.

Albert A. Webb Associates. November 2021. *Water Supply Assessment*.

Beaumont-Cherry Valley Water District. (2021). *2020 Urban Water Management Plan Draft*.

https://bcvwd.org/wp-content/uploads/2017/09/2020_BCVWD_UWMP_DRAFT.pdf.

CalRecycle. 2017. California's Statewide Per Resident, Per Employee, and Total Disposal Since 1989.

Available at <https://www.calrecycle.ca.gov/LGCentral/GoalMeasure/DisposalRate/MostRecent/>.

City of Beaumont. 2019. Mandatory Commercial Recycling. Available at

<http://www.beaumontca.gov/864/Commercial-Recycling>.

City of Beaumont. 2018. *Sewer Rate Study*. Available at

<https://www.beaumontca.gov/DocumentCenter/View/31055/Beaumont-Sewer-Rate-Study---2018?bidId=>.

County of Riverside. (2015). *County of Riverside Environmental Impact Report No. 521. Table 4.19-BL*.

Page 4.19-287. Riverside, CA: County of Riverside

Riverside County Flood Control and Water Conservation District. *Master Drainage Plan*. Available at

<http://content.rcflood.org/MDPADP/>. Accessed: March 4, 2022.

Riverside County Department of Waste Resources. *Lamb Canyon Landfill*. Available at

<https://www.rcwaste.org/landfill/lambcanyon>. Accessed January 2022.

SGPWA, 2020 – About SGPWA. Available: <https://www.sgpwa.com/about-us/>. Accessed: August 3, 2020.