
Preliminary Water Quality Management Plan

A Template for Projects located within the **Santa Ana Watershed** Region of Riverside County

Project Title: Orchard Logistics Center

Development No: TBD

Design Review/Case No: PW2021-0854

- Preliminary
- Final

Original Date Prepared: 2/10/2022

Revision Date(s): 06/03/2022

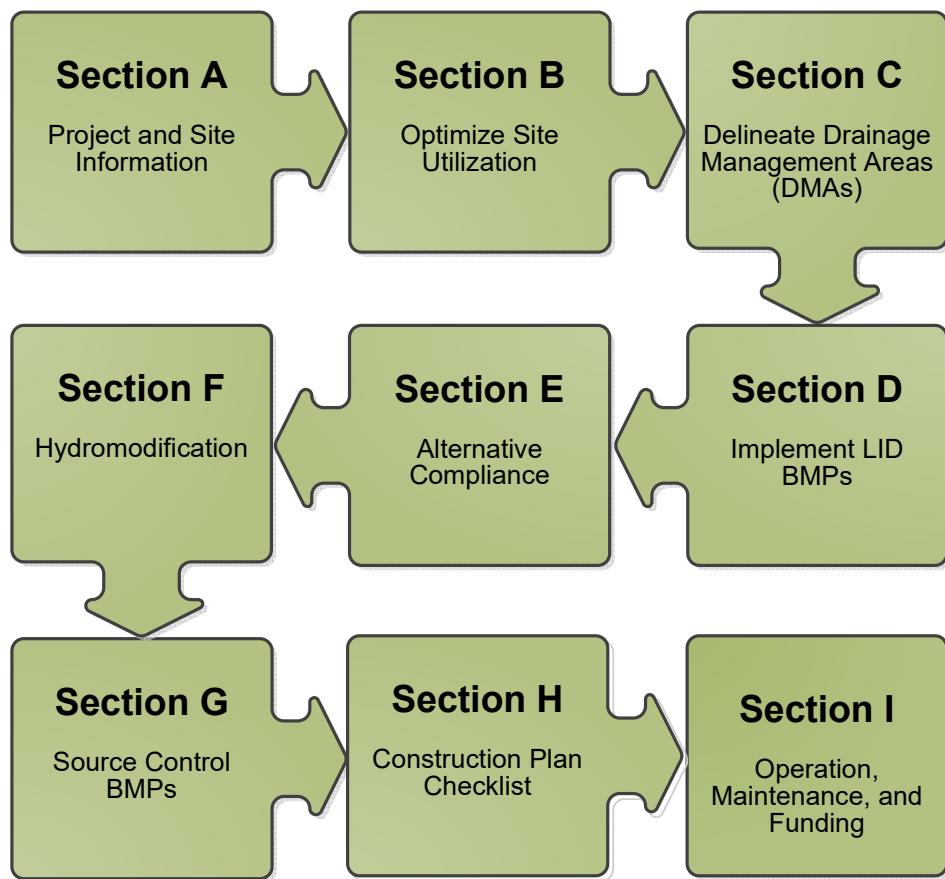
Prepared for Compliance with

Regional Board Order No. R8-2010-0033

Template revised June 30, 2016

Contact Information:

Prepared for:


Orchard Logistics Venture, LLC
Contact: Kyle Dorand (VP Devp)
3501 Jamboree Road, Suite 230
Newport Beach, CA 92660
KDorand@trammellcrow.com
(949) 283-5713

Prepared by:

Huitt-Zollars, Inc.
Manuel (Manny) Gonzales (PM)
3990 Concours, Suite 330
Ontario, CA 91764
mgonzales@huitt-zollars.com
(909) 941-7799 X11450

A Brief Introduction

This Project-Specific WQMP Template for the **Santa Ana Region** has been prepared to help guide you in documenting compliance for your project. Because this document has been designed to specifically document compliance, you will need to utilize the WQMP Guidance Document as your “how-to” manual to help guide you through this process. Both the Template and Guidance Document go hand-in-hand, and will help facilitate a well prepared Project-Specific WQMP. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance.

OWNER'S CERTIFICATION

This Project-Specific Water Quality Management Plan (WQMP) has been prepared for Orchard Logistics Venture, LLC by Huitt-Zollars, Inc. for the Orchard Logistics Center project.

This WQMP is intended to comply with the requirements of City of Beaumont for APN 417-020-070 which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under City of Beaumont Water Quality Ordinance (Chapter 13.24 - STORMWATER/URBAN RUNOFF MANAGEMENT AND DISCHARGE CONTROLS).

"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

Owner's Signature

Neal Holdridge

Owner's Printed Name

06/03/22

Date

Principal/Environmental Manager

Owner's Title/Position

PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. **R8-2010-0033** and any subsequent amendments thereto."

Preparer's Signature

MANUEL GONZALES, PE, QSD/QSP

Preparer's Printed Name

Preparer's Licensure:

EXP. 09/30/23

06/03/22

Date

SENIOR PROJECT MANAGER

Preparer's Title/Position

Table of Contents

Section A: Project and Site Information.....	6
A.1 Maps and Site Plans.....	6
A.2 Identify Receiving Waters.....	7
A.3 Additional Permits/Approvals required for the Project:	7
Section B: Optimize Site Utilization (LID Principles)	9
Section C: Delineate Drainage Management Areas (DMAs).....	11
Section D: Implement LID BMPs	13
D.1 Infiltration Applicability	13
D.2 Harvest and Use Assessment.....	14
D.3 Bioretention and Biotreatment Assessment	16
D.4 Feasibility Assessment Summaries	17
D.5 LID BMP Sizing	18
Section E: Alternative Compliance (LID Waiver Program)	19
E.1 Identify Pollutants of Concern	20
E.2 Stormwater Credits (N/A)	21
E.3 Sizing Criteria (N/A).....	21
E.4 Treatment Control BMP Selection	22
Section F: Hydromodification	23
F.1 Hydrologic Conditions of Concern (HCOC) Analysis.....	23
F.2 HCOC Mitigation.....	24
Section G: Source Control BMPs.....	25
Section H: Construction Plan Checklist	27
Section I: Operation, Maintenance and Funding	28

List of Tables

Table A.1 Identification of Receiving Waters.....	7
Table A.2 Other Applicable Permits.....	7
Table C.1 DMA Classifications.....	11
Table C.2 Type 'A', Self-Treating Areas (N/A)	11
Table C.3 Type 'B', Self-Retaining Areas (N/A).....	11
Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas (N/A)	12
Table C.5 Type 'D', Areas Draining to BMPs	12
Table D.1 Infiltration Feasibility.....	13
Table D.2 LID Prioritization Summary Matrix	17
Table D.3 DCV Calculations for LID BMPs	18
Table E.1 Potential Pollutants by Land Use Type.....	20
Table E.2 Water Quality Credits.....	21
Table E.3 Treatment Control BMP Sizing	21
Table E.4 Treatment Control BMP Selection	22
Table F.1 Hydrologic Conditions of Concern Summary	23
Table G.1 Permanent and Operational Source Control Measures	25
Table H.1 Construction Plan Cross-reference	27

List of Appendices

Appendix 1: Maps and Site Plans.....	31
Appendix 2: Construction Plans	32
Appendix 3: Soils Information.....	33
Appendix 4: Historical Site Conditions.....	34
Appendix 5: LID Infeasibility.....	35
Appendix 6: BMP Design Details	36
Appendix 7: Hydromodification	37
Appendix 8: Source Control	38
Appendix 9: O&M	39
Appendix 10: Educational Materials	40

Section A: Project and Site Information

PROJECT INFORMATION	
Type of Project:	Industrial
Planning Area:	~30.91 AC
Community Name:	Orchard Logistics Center
Development Name:	Orchard Logistics Center
PROJECT LOCATION	
Latitude & Longitude (DMS): 33°55'53.41"N & 116°59'48.55"W	
Project Watershed and Sub-Watershed: San Timoteo Creek & Santa Ana River Subwatershed	
Gross Acres: 30.91 AC	
APN(s): 417-020-070	
Map Book and Page No.: Thomas Bros. Map, Page 389	
PROJECT CHARACTERISTICS	
Proposed or Potential Land Use(s)	Industrial
Proposed or Potential SIC Code(s)	1541
Area of Impervious Project Footprint (SF)	1,106,743
Total Area of <u>proposed</u> Impervious Surfaces within the Project Footprint (SF)/or Replacement	1,106,743
Does the project consist of offsite road improvements?	<input type="checkbox"/> Y <input checked="" type="checkbox"/> N
Does the project propose to construct unpaved roads?	<input type="checkbox"/> Y <input checked="" type="checkbox"/> N
Is the project part of a larger common plan of development (phased project)?	<input type="checkbox"/> Y <input checked="" type="checkbox"/> N
EXISTING SITE CHARACTERISTICS	
Total area of <u>existing</u> Impervious Surfaces within the Project limits Footprint (SF)	55,905
Is the project located within any MSHCP Criteria Cell?	<input type="checkbox"/> Y <input checked="" type="checkbox"/> N
If so, identify the Cell number:	N/A
Are there any natural hydrologic features on the project site?	<input type="checkbox"/> Y <input checked="" type="checkbox"/> N
Is a Geotechnical Report attached?	<input checked="" type="checkbox"/> Y <input type="checkbox"/> N
If no Geotech. Report, list the NRCS soils type(s) present on the site (A, B, C and/or D)	N/A
What is the Water Quality Design Storm Depth for the project?	0.83"

This project is a new development consisting of an industrial facility located at the northeast corner of Prosperity and Distribution Way. Proposed building is approximately 600,000 SF on 30.91 acres of a partially improved lot.

BMP On-Site – Proposed development includes two drainage management areas: DMA A & DMA B. DMA A runoff originating from the site's parking lots, driveways, and roof drains will be directed to catch basins #1-9 (CB#1-9) and conveyed by storm drain line A & B to the proposed bioretention basin. DMA B low flow runoff originating from the site's southwest parking lots and driveways will be directed to a gravel filtration trench for treatment. Higher flows from this same area will be intercepted by CB#10. Overflow from the bioretention basin and gravel filtration trench will be conveyed by the proposed outlet to the existing 42-inch public storm drain lateral C-4 on Prosperity Way. See WQMP plan in Appendix 1.

A.1 Maps and Site Plans

When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a **minimum**, your WQMP Site Plan should include the following:

- Drainage Management Areas
- Proposed Structural BMPs
- Drainage Path
- Drainage Infrastructure, Inlets, Overflows
- Source Control BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Standard Labeling
- BMP Locations (Lat/Long)

Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps.

A.2 Identify Receiving Waters

Using Table A.1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1.

Table A.1 Identification of Receiving Waters

Receiving Waters	EPA Approved 303(d) List Impairments	Designated Beneficial Uses	Proximity to RARE Beneficial Use
San Timoteo Creek Reach 3	None	GWR, REC1, REC2, WARM, WILD	Not a designated RARE
San Timoteo Creek Reach 2	None	GWR, REC1, REC2, WARM, WILD	Not a designated RARE
San Timoteo Creek Reach 1A	None	AGR, MUN, REC1, REC2, SPWN, WARM, WILD	Not a designated RARE
Santa Ana River Reach 4	Salinity, TDS, Chlorides, Pathogens	GWR, RARE, REC1, REC2, SPWN	25 miles
Santa Ana River (Reach 3)	Pathogens, Metals (Copper & Lead)	AGR, GWR, MUN, RARE, REC1, REC2, SPWN, WARM, WILD	33 Miles
Prado Flood Control Basin	Nutrients and Pathogens	MUN, GWR, REC1, REC2, WARM, WILD, RARE	53 Miles
Santa Ana River (Reach 2)	Pathogens	MUN, AGR, GWR, REC1, REC2, WARM, WILD, RARE	70 Miles
Santa Ana River (Reach 1)	None	MUN, REC1, REC2, WARM, WILD	Not a designated RARE
Pacific Ocean	None	None	Not a designated RARE

A.3 Additional Permits/Approvals required for the Project:

Table A.2 Other Applicable Permits

Agency	Permit Required	
State Department of Fish and Game, 1602 Streambed Alteration Agreement	<input type="checkbox"/> Y	<input checked="" type="checkbox"/> N
State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert.	<input type="checkbox"/> Y	<input checked="" type="checkbox"/> N
US Army Corps of Engineers, CWA Section 404 Permit	<input type="checkbox"/> Y	<input checked="" type="checkbox"/> N

US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion	<input type="checkbox"/> Y	<input checked="" type="checkbox"/> N
Statewide Construction General Permit Coverage	<input checked="" type="checkbox"/> Y	<input type="checkbox"/> N
Statewide Industrial General Permit Coverage	<input type="checkbox"/> Y	<input checked="" type="checkbox"/> N
Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)	<input type="checkbox"/> Y	<input checked="" type="checkbox"/> N
Other (<i>please list in the space below as required</i>) City of Beaumont Building & Grading Permits Riverside County FCD – Connection Permit to Public Storm Drain	<input checked="" type="checkbox"/> Y	<input type="checkbox"/> N

If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

Section B: Optimize Site Utilization (LID Principles)

Review of the information collected in Section 'A' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, **constraints** might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. **Opportunities** might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others.

The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1.

Consideration of "highest and best use" of the discharge should also be considered. For example, Lake Elsinore is evaporating faster than runoff from natural precipitation can recharge it. Requiring infiltration of 85% of runoff events for projects tributary to Lake Elsinore would only exacerbate current water quality problems associated with Pollutant concentration due to lake water evaporation. In cases where rainfall events have low potential to recharge Lake Elsinore (i.e. no hydraulic connection between groundwater to Lake Elsinore, or other factors), requiring infiltration of Urban Runoff from projects is counterproductive to the overall watershed goals. Project proponents, in these cases, would be allowed to discharge Urban Runoff, provided they used equally effective filtration-based BMPs.

Site Constraints:

Based on the site's infiltration test and report (see Appendix 3), the native soil has a very slow infiltration rate. As a result, infiltration BMPs are infeasible for this development.

Solution:

A bioretention basin and gravel filtration trench will be used for LID design. The bioretention basin is sized to detain DMA A's WQMP DVC. The gravel filtration trench is sized to treat DMA B's WQMP treatment flow. Both LID BMPs will remove pollutants of concern from surface runoff. The outlet on the southwest corner of the site will convey overflow from both BMPs to the 42-inch public storm drain lateral C-4 on Prosperity Way.

Site Optimization

The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

Did you identify and preserve existing drainage patterns? If so, how? If not, why?

Existing drainage patterns were identified. However, existing drainage patterns were not preserved because the site was previously used for agriculture and drained to four discharge points. In order to

incorporate LID design principles, the proposed drainage pattern follows a northeast to southwest drainage pattern. Runoff will be collected at the southwest corner of the site where a bioretention basin and a gravel filtration trench will provide treatment. Approximately 96 percent of the site will be treated by the bioretention basin.

Did you identify and protect existing vegetation? If so, how? If not, why?

No. The site has no existing vegetation to protect. New vegetation will be planted throughout the site.

Did you identify and preserve natural infiltration capacity? If so, how? If not, why?

Natural infiltration capacity was identified by the infiltration tests performed by Southern California Geotechnical, Inc (SCG). Infiltration tests determined the site's infiltration rate is below the WQMP Guidance Document's minimum infiltration rate. As a result, infiltration BMPs were not be used for this development.

Did you identify and minimize impervious area? If so, how? If not, why?

Yes. Proposed development includes landscape areas around the perimeter of the site and proposed building. Onsite bioretention basins will also provide additional landscape area. Therefore, by maximizing the onsite landscape area, the amount of impervious area was minimized.

Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why?

No. The proposed drainage design does not direct runoff from impervious to pervious areas. However, the proposed drainage design directs runoff to the proposed onsite storm drain system which will convey runoff to the proposed bioretention basins on the southwest corner of the site.

Section C: Delineate Drainage Management Areas (DMAs)

Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C.1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications.

Table C.1 DMA Classifications

DMA Name or ID	Surface Type(s) ¹²	Area (Sq. Ft.)	DMA Type
DMA A1	Roof	600,091	D
DMA A2	Ornamental Landscaping	197,811	D
DMA A3	Decomposed Granite	8,614	D
DMA A4	Concrete or Asphalt	472,541	D
DMA B1	Ornamental Landscaping	27,560	D
DMA B2	Decomposed Granite	225	D
DMA B3	Concrete or Asphalt	21,785	D

¹Reference Table 2-1 in the WQMP Guidance Document to populate this column

²If multi-surface provide back-up

Table C.2 Type 'A', Self-Treating Areas (N/A)

DMA Name or ID	Area (Sq. Ft.)	Stabilization Type	Irrigation Type (if any)
N/A	N/A	N/A	N/A

Table C.3 Type 'B', Self-Retaining Areas (N/A)

Self-Retaining Area				Type 'C' DMAs that are draining to the Self-Retaining Area		
DMA Name/ ID	Post-project surface type	Area (square feet) [A]	Storm Depth (inches) [B]	DMA Name / ID [C]	[C] from Table C.4 [D]	Required Retention Depth (inches)
N/A	N/A	N/A	N/A	N/A	N/A	N/A

$$[D] = [B] + \frac{[B] \cdot [C]}{[A]}$$

Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas (N/A)

DMA					Receiving Self-Retaining DMA		
DMA Name/ ID	Area (square feet) [A]	Post-project surface type	Impervious fraction	Product	DMA name / ID	Area (square feet) [D]	Ratio [C]/[D]
			[B]	[C] = [A] x [B]		[D]	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table C.5 Type 'D', Areas Draining to BMPs

DMA Name or ID	BMP Name or ID
DMA A1	Bioretention Basin
DMA A2	Bioretention Basin
DMA A3	Bioretention Basin
DMA A4	Bioretention Basin
DMA B1	Gravel Filtration Trench
DMA B2	Gravel Filtration Trench
DMA B3	Gravel Filtration Trench

Note: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP.

Section D: Implement LID BMPs

D.1 Infiltration Applicability

Is there an approved downstream 'Highest and Best Use' for stormwater runoff (see discussion in Chapter 2.4.4 of the WQMP Guidance Document for further details)? Y N

If yes has been checked, Infiltration BMPs shall not be used for the site; proceed to section D.3

If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream 'Highest and Best Use' feature.

Geotechnical Report

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Co-Permittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document? Y N

Infiltration Feasibility

Table D.1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

Table D.1 Infiltration Feasibility

Does the project site...	YES	NO
...have any DMAs with a seasonal high groundwater mark shallower than 10 feet? If Yes, list affected DMAs:		X
...have any DMAs located within 100 feet of a water supply well? If Yes, list affected DMAs:		X
...have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater could have a negative impact? If Yes, list affected DMAs:		X
...have measured in-situ infiltration rates of less than 1.6 inches / hour? If Yes, list affected DMAs: DMA 1A, DMA 2A, DMA 3A, DMA 4A, DMA 1B, DMA 2B, DMA 3B	X	
...have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final infiltration surface? If Yes, list affected DMAs:		X
...geotechnical report identify other site-specific factors that would preclude effective and safe infiltration? Describe here:		X

If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below.

D.2 Harvest and Use Assessment

Please check what applies:

Reclaimed water will be used for the non-potable water demands for the project.

Response: Reclaimed water will not be used for non-potable water demands for this project.

Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee).

Response: Harvest and Use is not feasible for this project, therefore will not impact downstream water right.

The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case, Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture Volume will be infiltrated or evapotranspired.

Response: Infiltration BMP will not be used for this project site. Bioretention will be used.

If any of the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If none of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet use and other non-potable uses (e.g., industrial use).

Irrigation Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Use BMPs on your site:

Step 1: Identify the total area of irrigated landscape on the site, and the type of landscaping used.

Total Area of Irrigated Landscape: 226,747 SF (5.21 ac)

Type of Landscaping (Conservation Design or Active Turf): Conservation Design

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: 1,106,743 SF (25.41 ac)

Step 3: Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA).

Enter your EIATIA factor: 1.99

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required.

Minimum required irrigated area: 2,202,419 SF (50.57 ac)

Step 5: Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4).

Minimum required irrigated area (Step 4)	Available Irrigated Landscape (Step 1)
2,202,419 SF	226,747 SF

→ Harvest and Use is not feasible for this project.

Toilet Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet flushing uses on your site:

Step 1: Identify the projected total number of daily toilet users during the wet season, and account for any periodic shut downs or other lapses in occupancy:

Projected Number of Daily Toilet Users: 500

Project Type: Industrial

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for toilet use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: 1,106,743 SF (24.41 ac)

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-2 in Chapter 2 to determine the minimum number of toilet users per tributary impervious acre (TUTIA).

Enter your TUTIA factor: 224

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of toilet users that would be required.

Minimum number of toilet users: 5,468

Step 5: Determine if harvesting stormwater runoff for toilet flushing use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

Minimum required Toilet Users (Step 4)	Projected number of toilet users (Step 1)
5,468 Users	500 Users

→ Harvest and Use for toilet use is not feasible for this project.

Other Non-Potable Use Feasibility

Are there other non-potable uses for stormwater runoff on the site (e.g. industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A.

N/A

Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation.

Average Daily Demand: N/A

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-4 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre.

Enter the factor from Table 2-4: N/A

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of gallons per day of non-potable use that would be required.

Minimum required use: N/A

Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the projected average daily use (Step 1) to the minimum required non-potable use (Step 4).

Minimum required non-potable use (Step 4)	Projected average daily use (Step 1)
N/A	N/A

If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment per Section 3.4.2 of the WQMP Guidance Document.

D.3 Bioretention and Biotreatment Assessment

Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance Document are feasible on nearly all development sites with sufficient advance planning.

Select one of the following:

- LID Bioretention/Biotreatment BMPs will be used for some or all DMAs of the project as noted below in Section D.4 (note the requirements of Section 3.4.2 in the WQMP Guidance Document).
- A site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee to discuss this option. Proceed to Section E to document your alternative compliance measures.

D.4 Feasibility Assessment Summaries

From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D.2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

Table D.2 LID Prioritization Summary Matrix

DMA Name/ID	LID BMP Hierarchy				No LID (Alternative Compliance)
	1. Infiltration	2. Harvest and use	3. Bioretention	4. Biotreatment	
DMA A1	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
DMA A2	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
DMA A3	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
DMA A4	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
DMA B1	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
DMA B2	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
DMA B3	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

Infiltration LID BMPs are not feasible for this development due to the slow infiltration rates (0-0.2 in/hr) reported in the Infiltration Test report created by Southern California Geotechnical, Inc. See Infiltration Test report in Appendix 3.

Harvest and Use LID BMPs are not feasible according to Section D.2.

Therefore, Bioretention LID BMPs will be used for DMA A & Gravel Filtration for DMA B.

D.5 LID BMP Sizing

Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the V_{BMP} worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required V_{BMP} using a method approved by the Copermittee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Copermittee to assist you in correctly sizing your LID BMPs. Complete Table D.3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

Table D.3 DCV Calculations for LID BMPs

DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Effective Impervious Fraction, I_f	DMA Runoff Factor	DMA Areas x Runoff Factor	Bioretention Basin		
	[A]		[B]	[C]	[A] x [C]	Design Storm Depth (in)	Design Capture Volume, V_{BMP} (cubic feet)	Proposed Volume on Plans (cubic feet)
DMA 1A	600,091	<i>Roofs</i>	1	0.89	535,281			
DMA 2A	197,811	<i>Ornamental Landscaping</i>	0.1	0.11	21,850			
DMA 3A	8,614	<i>Decomposed Granite</i>	0.4	0.28	2,410			
DMA 4A	472,541	<i>Concrete or Asphalt</i>	1	0.89	421,507			
	$A_T = \sum[A]$ 1,279,058				$\Sigma = [D]$ 981,054	[E] 0.83	$[F] = \frac{[D] \times [E]}{12}$ 67,856	[G] 69,338

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

Section E: Alternative Compliance (LID Waiver Program)

N/A

LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Copermittee). Check one of the following Boxes:

LID Principles and LID BMPs have been incorporated into the site design to fully address all Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed.

- *Or* -

The following Drainage Management Areas are unable to be addressed using LID BMPs. A site-specific analysis demonstrating technical infeasibility of LID BMPs has been approved by the Co-Permittee and included in Appendix 5. Additionally, no downstream regional and/or sub-regional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated.

E.1 Identify Pollutants of Concern N/A

Utilizing Table A.1 from Section A above which noted your project's receiving waters and their associated EPA approved 303(d) listed impairments, cross reference this information with that of your selected Priority Development Project Category in Table E.1 below. If the identified General Pollutant Categories are the same as those listed for your receiving waters, then these will be your Pollutants of Concern and the appropriate box or boxes will be checked on the last row. The purpose of this is to document compliance and to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs.

Table E.1 Potential Pollutants by Land Use Type

Priority Development Project Categories and/or Project Features (check those that apply)	General Pollutant Categories							
	Bacterial Indicators	Metals	Nutrients	Pesticides	Toxic Organic Compounds	Sediments	Trash & Debris	Oil & Grease
<input type="checkbox"/> Detached Residential Development	P	N	P	P	N	P	P	P
<input type="checkbox"/> Attached Residential Development	P	N	P	P	N	P	P	P ⁽²⁾
<input checked="" type="checkbox"/> Commercial/Industrial Development	P ⁽³⁾	P	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁵⁾	P ⁽¹⁾	P	P
<input type="checkbox"/> Automotive Repair Shops	N	P	N	N	P ^(4, 5)	N	P	P
<input type="checkbox"/> Restaurants (>5,000 ft ²)	P	N	N	N	N	N	P	P
<input type="checkbox"/> Hillside Development (>5,000 ft ²)	P	N	P	P	N	P	P	P
<input checked="" type="checkbox"/> Parking Lots (>5,000 ft ²)	P ⁽⁶⁾	P	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁴⁾	P ⁽¹⁾	P	P
<input type="checkbox"/> Retail Gasoline Outlets	N	P	N	N	P	N	P	P
Project Priority Pollutant(s) of Concern	<input checked="" type="checkbox"/>							

P = Potential

N = Not Potential

⁽¹⁾ A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected

⁽²⁾ A potential Pollutant if the project includes uncovered parking areas; otherwise not expected

⁽³⁾ A potential Pollutant is land use involving animal waste

⁽⁴⁾ Specifically petroleum hydrocarbons

⁽⁵⁾ Specifically solvents

⁽⁶⁾ Bacterial indicators are routinely detected in pavement runoff

E.2 Stormwater Credits (N/A)

Projects that cannot implement LID BMPs but nevertheless implement smart growth principles are potentially eligible for Stormwater Credits. Utilize Table 3-8 within the WQMP Guidance Document to identify your Project Category and its associated Water Quality Credit. If not applicable, write N/A.

Table E.2 Water Quality Credits

Qualifying Project Categories	Credit Percentage ²
<i>Total Credit Percentage¹</i>	

¹Cannot Exceed 50%

²Obtain corresponding data from Table 3-8 in the WQMP Guidance Document

E.3 Sizing Criteria N/A

After you appropriately considered Stormwater Credits for your project, utilize Table E.3 below to appropriately size them to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.2 of the WQMP Guidance Document for further information.

Table E.3 Treatment Control BMP Sizing

[B], [C] is obtained as described in Section 2.3.1 from the WQMP Guidance Document

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document.

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs [G] = 12,180.

[G] is for Flow-Based Treatment Control BMPs [G] = 43,360, for Volume-Based BMPs [H] is from the Total Credit Percentage as Calculated from Table E-2 above.

[I] as obtained from a design procedure sheet from the BMP manufacturer and should be included in Appendix 6

E.4 Treatment Control BMP Selection

Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must have a removal efficiency of a medium or high effectiveness as quantified below:

- **High:** equal to or greater than 80% removal efficiency
- **Medium:** between 40% and 80% removal efficiency

Such removal efficiency documentation (e.g., studies, reports, etc.) as further discussed in Chapter 3.5.2 of the WQMP Guidance Document, must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1.

Table E.4 Treatment Control BMP Selection

Selected Treatment Control BMP Name or ID ¹	Priority Pollutant(s) of Concern to Mitigate ²	Removal Efficiency Percentage ³

¹ Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may be listed more than once if they possess more than one qualifying pollutant removal efficiency.

² Cross Reference Table E.1 above to populate this column.

³ As documented in a Co-Permittee Approved Study and provided in Appendix 6.

Section F: Hydromodification

F.1 Hydrologic Conditions of Concern (HCOC) Analysis

Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure 3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2.

HCOC EXEMPTION 1: The Priority Development Project disturbs less than one acre. The Co-permittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development.

Does the project qualify for this HCOC Exemption? Y N

If Yes, HCOC criteria do not apply.

HCOC EXEMPTION 2: The volume and time of concentration¹ of storm water runoff for the post-development condition is not significantly different from the pre-development condition for a 2-year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate:

- Riverside County Hydrology Manual
- Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or derivatives thereof, such as the Santa Barbara Urban Hydrograph Method
- Other methods acceptable to the Co-Permittee

Does the project qualify for this HCOC Exemption? Y N

If Yes, report results in Table F.1 below and provide your substantiated hydrologic analysis in Appendix 7.

Table F.1 Hydrologic Conditions of Concern Summary

	2 year – 24 hour		
	Pre-condition	Post-condition	% Difference
Time of Concentration	(N/A)	(N/A)	(N/A)
Volume (Cubic Feet)	(N/A)	(N/A)	(N/A)

¹ Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet.

HCOC EXEMPTION 3: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Susceptibility Maps.

Does the project qualify for this HCOC Exemption? Y N

If Yes, HCOC criteria do not apply and note below which adequate sump applies to this HCOC qualifier:

F.2 HCOC Mitigation

If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions:

- a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis.
- b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters.
- c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2-year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the pre-development 2-year peak flow.

Be sure to include all pertinent documentation used in your analysis of the items a, b or c in Appendix 7.

This project complies with condition c from section F.2 HCOC Mitigation.

Explanation:

Proposed post development unit hydrograph 2-yr 24-hr peak flow ($Q_{2,24}$) is approximately 8.0 CFS. Existing unit hydrograph $Q_{2,24}$ is approximately 5.0 CFS. The proposed bioretention basin is sized to detain post development 2-yr 24-hr peak flow ($Q_{2,24}$). After runoff is detained in the proposed bioretention system, proposed post development $Q_{2,24}$ is approximately 5.0 CFS and meets the HCOC mitigation requirements. See existing and proposed unit hydrographs as well as the project's basin routing summary details in Appendix 7.

Section G: Source Control BMPs

Source control BMPs include permanent, structural features that may be required in your project plans — such as roofs over and berms around trash and recycling areas — and Operational BMPs, such as regular sweeping and “housekeeping”, that must be implemented by the site’s occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site:

1. **Identify Pollutant Sources:** Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site.
2. **Note Locations on Project-Specific WQMP Exhibit:** Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1.
3. **Prepare a Table and Narrative:** Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G.1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. **Add additional narrative** in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs.
4. **Identify Operational Source Control BMPs:** To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site.

Table G.1 Permanent and Operational Source Control Measures

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
Onsite Storm Drain Inlet	Mark all inlets with the words “Only Rain Down the Storm Drain” or similar. Catch Basin Markers may be available from the Riverside County Flood Control and Water Conservation District. Call (951) 955-1200 to verify availability.	<ul style="list-style-type: none">• Maintain and periodically repaint or replace inlet markings.• Provide stormwater pollution prevention information to new site owners, lessees, or operators.• See applicable operational BMP fact sheet SC-44, “Drainage System Maintenance,” in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com• Include the following in lease agreements: “Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains.”

Loading Docks	The project site will have loading docks which are shown on the Water Quality Management plan. Loading docks shall be inspected on a weekly basis to help ensure that any trash and debris are collected prior to being washed into the storm drain system. All stormwater runoff from the loading dock areas will be discharged to a bioretention basin. Basin overflow will be conveyed to the public storm drain system. Documentation of loading dock inspection/maintenance shall be kept by the owner in perpetuity.	<ul style="list-style-type: none"> Move loaded and unloaded items indoors as soon as possible. See fact sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
Fire Sprinkler Test	Underground fire protection service and fire sprinklers test will be provided per the uniform fire code and the requirements of Riverside County.	<ul style="list-style-type: none"> Provide a means to drain fire sprinkler test water to the sanitary sewer.
Plazas, sidewalks, and Parking Lots	Documentation of such sweeping shall be kept by the owner in perpetuity. Frequency of sweeping shall be adjusted as needed to maintain a clean site.	<ul style="list-style-type: none"> Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into storm drain system. Collect wash water containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.
Trash Storage Areas	Trash storage areas shall be paved with an impervious surface designed not to allow run-on from adjoining areas. Trash storage areas shall be designed to divert runoff from adjoining roofs and pavements from the surrounding area and screened or walled to prevent off-site transport of trash. Trash dumpsters (containers) shall be leak proof and have attached covers and lids. Trash enclosures shall be roofed per City standards and the details on the WQMP exhibit in Appendix 1. Trash compactors shall be roofed and set on a concrete pad per City standards. The pad shall be a minimum of one foot larger all around than the trash compactor and sloped to drain to a sanitary sewer line. Connection of trash area drains to the MS4 is prohibited. See CASQA SD-32 BMP fact sheet in Appendix 10 for additional information. Signs shall be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.	<ul style="list-style-type: none"> Adequate number of receptacles shall be provided. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available onsite. See fact sheet SC-34 "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbook at www.cabmphandbooks.com and in Appendix 10.

Section H: Construction Plan Checklist

Populate Table H.1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

Table H.1 Construction Plan Cross-reference

BMP No. or ID	BMP Identifier and Description	Corresponding Plan Sheet(s)	BMP Location (Lat/Long)
1	Bioretention Basin	Conceptual Grading Plan	Lat: 33°55'49"N Long: 116°59'55"W
2	Gravel Filtration Trench	Conceptual Grading Plan	Lat: 33°55'54"N Long: 116°59'55"W

Note that the updated table — or Construction Plan WQMP Checklist — is **only a reference tool** to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.

Section I: Operation, Maintenance and Funding

The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

1. A means to finance and implement facility maintenance in perpetuity, including replacement cost.
2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geo-locating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas.

Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document.

Maintenance Mechanism:

BMP	Responsible Party(s)	Inspection/Maintenance Activities Required	Minimum Frequency of Activities
Landscape and Irrigation	Owner	<p>See CASQA BMP Fact sheet SD-10 and SD-12 in Appendix 10.</p> <p>-Site landscaping design shall be implemented in accordance with the requirements of the site specific WQMP and local agency requirements.</p> <p>-Site landscaping maintenance shall begin immediately after it has been planted.</p> <p>-Maintenance of landscaping shall occur on a weekly basis and adjusted accordingly based on current conditions and seasonal needs.</p> <p>-Inspection of irrigation system shall be provided on a bi-weekly basis to ensure proper function of the irrigation system.</p>	Weekly

		<ul style="list-style-type: none"> -Malfunctioning systems shall be repaired or replaced immediately. -Inspect plant health on a monthly basis. Repair or replace unhealthy plants as needed. -Inspect side slopes of basins and sloped areas on a bi-weekly basis and repair as needed. Re-plant and apply erosion protection to those areas to help prevent erosion in the future. -Landscape clippings shall be swept and picked up immediately to prevent it from entering the storm drain system or adjacent sedimentation basins and filtration basins. Dispose of landscape clippings in a legal manner 	
MS4 Stenciling and Signage	Owner	<p>See CASQA BMP Fact sheet SD-13 in Appendix 10.</p> <ul style="list-style-type: none"> -MS4 Stenciling and signage shall be placed during construction and inspection and maintenance shall begin upon completion of construction. -Inspect catch basin stenciling on a bi-monthly basis. Replace any damaged, missing or faded stencils in a timely manner. 	Bi-monthly
Common area litter control, loading docks and trash storage areas	Owner	<p>See CASQA BMP Fact sheet SD-32 in Appendix 10.</p> <ul style="list-style-type: none"> -Inspection and Maintenance of common areas, loading docks and trash storage areas shall begin upon completion of construction. -Visual inspection of trash storage areas shall take place on a weekly basis and adjusted on an as needed basis. -Inspect areas for trash and debris. Remove any found trash and debris immediately. Dispose of trash and debris in a legal manner. -Inspect areas for any spills. Pick up/clean up found spills immediately. Dispose of spill material in a legal manner. 	Daily
Parking lot sweeping	Owner	<p>See CASQA BMP Fact sheet SD-11 and SE-7 in Appendix 10.</p> <ul style="list-style-type: none"> -Parking lot sweeping shall begin after the completion of construction and take place on a monthly basis. Dispose of picked up material in a legal manner. 	Monthly
Drainage facility (including roof drains) inspection and maintenance	Owner	<p>See CASQA BMP Fact sheet SE-10 in Appendix 10.</p> <ul style="list-style-type: none"> -Inspection and maintenance of site drainage facilities and roof drains shall begin immediately upon completion of construction. -Catch basins and roof drain inlet shall be clear of any debris - prior to any storm event to ensure proper function of the roof drains. Collected debris shall be disposed of in a legal manner. 	Monthly, before & after rain event
Bioretention Basin/ Gravel Filtration Trench (Sand Filters)	Owner	<p>See Appendix 6 for basin calculation and 10 for CASQA BMP Fact sheet TC-11.</p> <ul style="list-style-type: none"> -Once the bio-retention (sedimentation and media filter basin) have gone on-line, inspections should occur after every major storm for the first year to ensure that proper stabilization and 	Every 6 months

	<p>function is achieved. Continuous inspection and maintenance shall be provided once every six months. Special attention should be paid to how long water remains standing in the basin after a storm; standing water within the basin more than 48 hours after a storm indicates that the filtration rates are insufficient and maintenance of the filter basin bottom is needed. If standing water remains after 48 hours, the standing water shall be removed in accordance with the local agency guidelines and maintenance of the filter basin bottom shall be scheduled immediately. Factors that are typically responsible for clogging the filter basin bottom include upstream sediment erosion and excessive compaction of the basin bottom. These should be repaired immediately to help achieve the desired filtration rates.</p> <p>-Observe and document evidence of collected sediments, trash, debris and oils/greases.</p> <p>-Sediments, trash, debris and oils/greases shall be removed and disposed of in a legal manner.</p> <p>-Observe and document evidence of erosion of side slopes or flowlines.</p> <p>-Schedule repair of eroded side slopes or flowlines immediately.</p> <p>-Protection measures against further erosion shall be placed until the eroded areas are repaired. Protection measures should be at a minimum placement of gravel bags and fiber rolls to prevent further erosion of the affected areas until the areas have been repaired and vegetation has been established.</p>	
--	--	--

Will the proposed BMPs be maintained by a Home Owners' Association (HOA) or Property Owners Association (POA)?

Y N

Owner Information:

Kyle Dorand
 Orchard Logistics Venture, LLC
 3501 Jamboree Road, Suite 230
 Newport Beach, CA 92660
 KDorand@trammellcrow.com
 (949) 283-5713

Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.

Appendix 1: Maps and Site Plans

Location Map, WQMP Site Plan and Receiving Waters Map

Appendix 2: Construction Plans

Grading and Drainage Plans & Landscape Plans

Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data

Appendix 4: Historical Site Conditions

Historical Site Conditions

Not Available At This Time

Appendix 5: LID Infeasibility

LID Technical Infeasibility Analysis

We analyzed potential BMP's using the established hierarchy in the WQMP Guidance manual. It was determined that infiltration was not feasible due to the low site infiltration rates. Harvest and Reuse was determined not to be feasible due to drought conditions. LID bioretention method was the selected BMP for treatment for most of the site using a bioretention basin along the westerly side. Due to grade elevations, a small area located at the southwest corner of the site could not be conveyed to the basin. Instead a gravel filtration trench will be constructed. This is a practical low maintenance option when no proprietary systems are allowed and when other options are not available.

Appendix 6: BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation

Appendix 7: Hydromodification

Supporting Detail Relating to Hydrologic Conditions of Concern

This site did not fall within a HCOC exempt area. Unit hydrograph and basin routing calculations were prepared to demonstrate that the 2-yr 24-hr event was met. As a result, this project will comply with HCOC mitigation requirements.

Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

Will be completed and updated with Final WQMP

Appendix 9: O&M

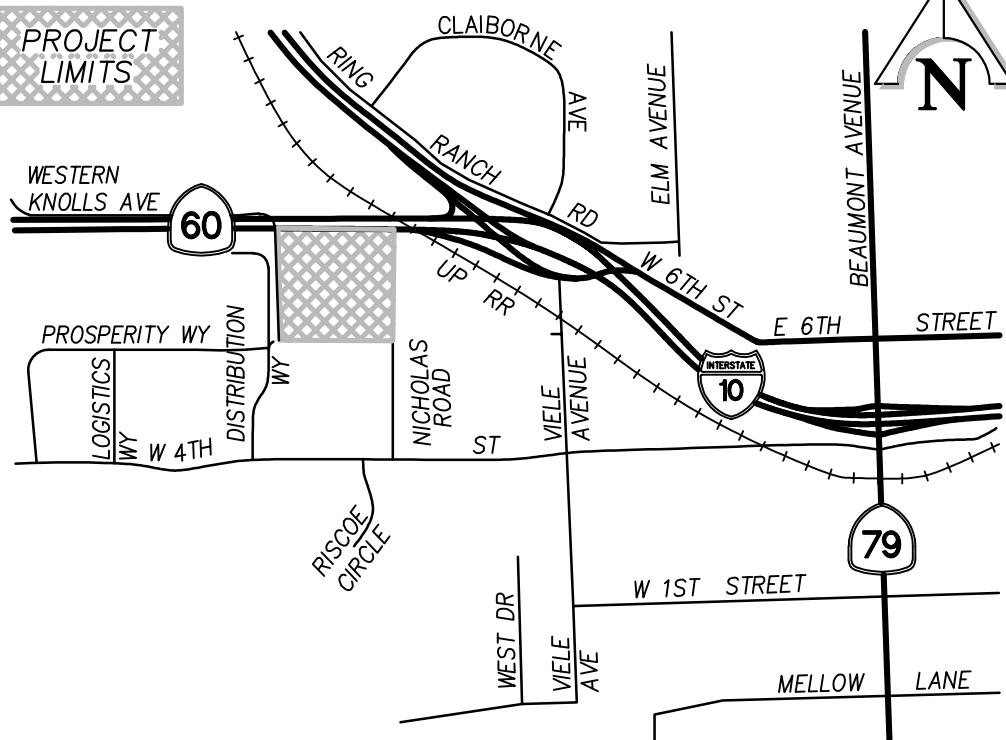
Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

Will be provided in Final WQMP

The building will be leased, but the maintenance responsibility will continue to be on the owner (Orchard Logistic Venture, LLC).

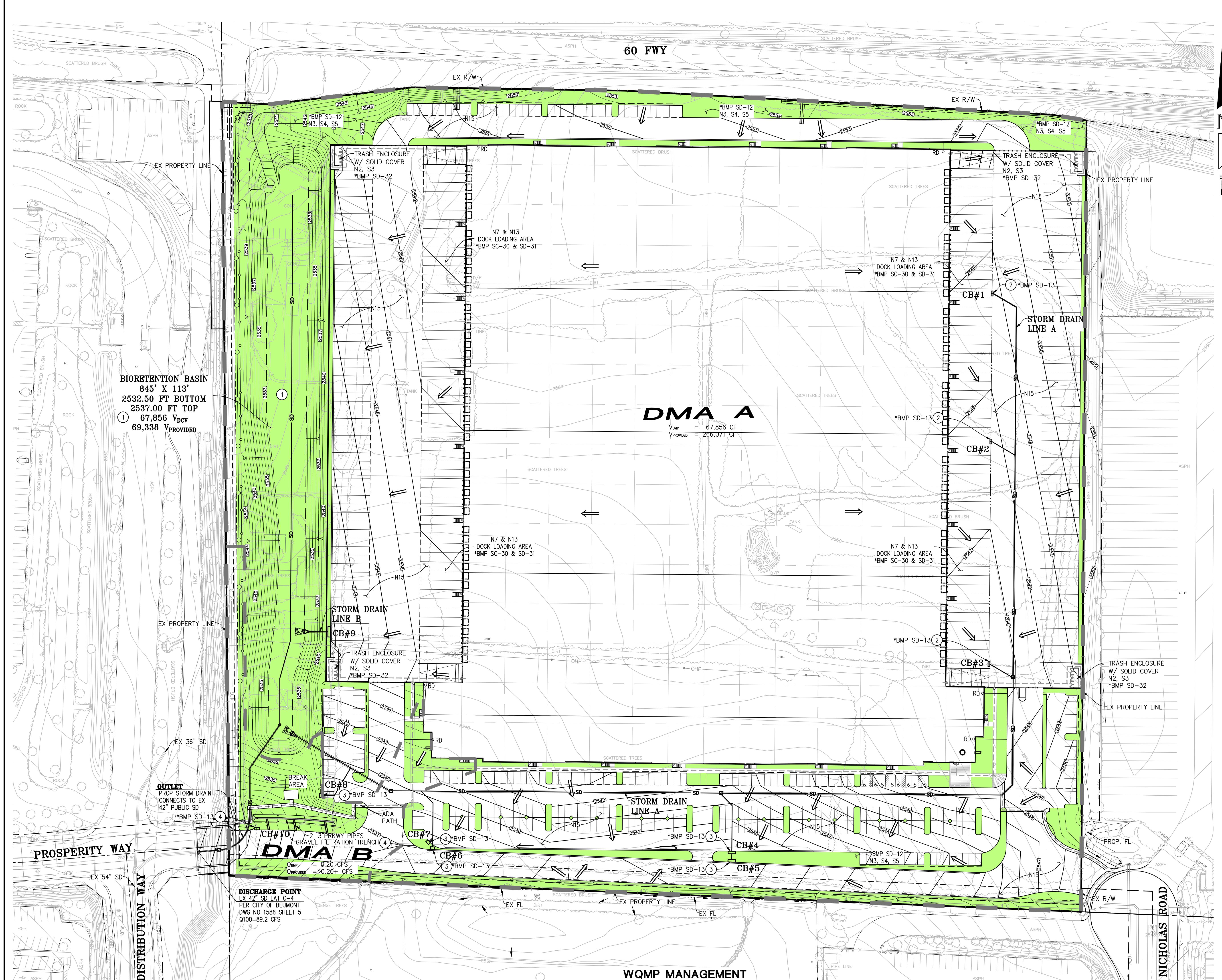
Appendix 10: Educational Materials

BMP Fact sheets, Maintenance Guidelines and Other End-User BMP Information


Will be provided in Final WQMP

Appendix 1: Maps and Site Plans

Location Map, WQMP Site Plan and Receiving Waters Map


LEGEND

PROJECT
LIMITS

VICINITY MAP

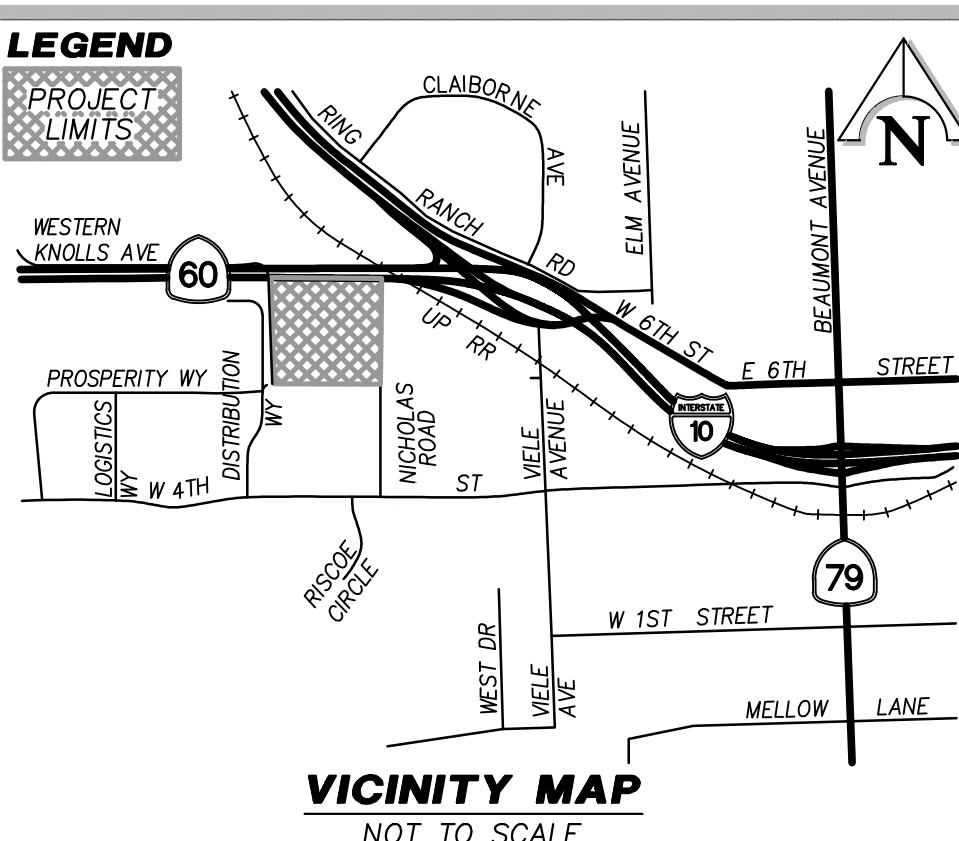
NOT TO SCALE

WQMP MANAGEMENT

DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Effective Impervious Fraction, I_r	DMA Runoff Factor	DMA Areas x Runoff Factor	Design Storm Depth (in)	Design Capture Volume, V_{bump} (cf)	Proposed Volume (cf)
DMA A1	600,091	Roofs	1	0.89	535281			
DMA A2	197,811	Ornamental Landscaping	0.1	0.11	21850			
DMA A3	8,614	Decomposed Granite	0.4	0.28	2410			
DMA A4	472,541	Concrete or Asphalt	1	0.89	421507			
DMA A	1,279,058	BIO-RETENTION BMP		981048	0.83	67,856	69,338	

*THE BIORETENTION BASIN IS ALSO SIZED TO DETAIN 100-YEAR STORM FOR FLOOD CONTROL. SEE PRELIMINARY DRAINAGE REPORT FOR DETAILS

DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Effective Impervious Fraction, I_r	DMA Runoff Factor	Design Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
DMA B1	27560.00	Ornamental Landscaping	0.10	0.11	3044.20		
DMA B2	225.00	Decomposed Granite	0.40	0.28	62.90		
DMA B3	21785.00	Concrete or Asphalt	1.00	0.89	19432.20		
DMA B	49,570	GRAVEL FILTRATION TRENCH BMP TOTAL		22539.3	0.20	0.1	>0.2


LAT. / LONG.
33°55'49" N / -116°59'55" W

LAT. / LONG.
33°55'54" N / -116°59'55" W

LEGEND

- SD PROPOSED STORM DRAIN
- FLOW PROPOSED FLOWLINE
- DRAINAGE AREA BOUNDARY
- PROPOSED CATCH BASIN INLET, SOURCE CONTROL BMP: N1, N14, N17, & S1
- PROPOSED LANDSCAPING AREA - BMP SD-10 & SD-12 SOURCE CONTROL BMP: N3, S4, & S5
- CB CATCH BASIN
- RD ROOF DRAIN
- FLOW DIRECTION
- INLET STRUCTURE W/ RIP-RAP

SCALE 1" = 60'

Trash Capture Products

Grate Inlet Filter

The Bio-Clean Grate Inlet Filter is a trash capture device designed for public agencies and backed by a 5 year warranty, this easy to install filter is constructed from stainless steel for durability and simple maintenance.

Constructed of 300 stainless steel, it is built to last. The filter is designed to withstand high flow rates and screens provide higher levels of filtration and water flow. The filter is equipped with unimpeded high flow bypass for even the largest debris.

The filter is also equipped with a floating hydrocarbon boom mounted to the filter allowing it to flow up and down with the water level of the inlet.

The filter is designed to fit most of any inlet type. Each filter can be custom built to meet specific project needs. Screen size and media type can be modified to remove specific debris.

Advantages and Performance

- 5 Year warranty
- Custom sizes available
- No nets or geotextiles
- 15 years user life
- No replacement costs as found with fabric filters
- Meets LEED requirements
- Fits in shallow catch basins
- 100% removal of trash and debris
- Meets full capture requirements

Notes

1. FILTER SYSTEM PROVIDES FOR ENTIRE COVERAGE OF INLET SPACING TO 10' DIA. TO DRAIN ALL FLOW TO 10' DIA. FILTER SYSTEM. 2. FILTER SYSTEM IS DESIGNED FOR 10' DIA. INLETS. 3. SYSTEM ATTACHED TO THE CATCH BASIN WITH 10' DIA. INLET. 4. FILTER MANUFACTURED OF 300 STAINLESS STEEL. 5. FILTER IS 10' DIA. X 10' TALL. 6. FILTER IS 10' DIA. X 10' TALL. 7. FILTER CAN BE FITTED WITH HYDROCARBON ABSORPTION ROOM. 8. FILTER IS 10' DIA. X 10' TALL. 9. FILTER IS 10' DIA. X 10' TALL. 10. FILTER IS 10' DIA. X 10' TALL. 11. FILTER IS 10' DIA. X 10' TALL. 12. FILTER IS 10' DIA. X 10' TALL. 13. FILTER IS 10' DIA. X 10' TALL. 14. FILTER IS 10' DIA. X 10' TALL. 15. FILTER IS 10' DIA. X 10' TALL. 16. FILTER IS 10' DIA. X 10' TALL. 17. FILTER IS 10' DIA. X 10' TALL. 18. FILTER IS 10' DIA. X 10' TALL. 19. FILTER IS 10' DIA. X 10' TALL. 20. FILTER IS 10' DIA. X 10' TALL. 21. FILTER IS 10' DIA. X 10' TALL. 22. FILTER IS 10' DIA. X 10' TALL. 23. FILTER IS 10' DIA. X 10' TALL. 24. FILTER IS 10' DIA. X 10' TALL. 25. FILTER IS 10' DIA. X 10' TALL. 26. FILTER IS 10' DIA. X 10' TALL. 27. FILTER IS 10' DIA. X 10' TALL. 28. FILTER IS 10' DIA. X 10' TALL. 29. FILTER IS 10' DIA. X 10' TALL. 30. FILTER IS 10' DIA. X 10' TALL. 31. FILTER IS 10' DIA. X 10' TALL. 32. FILTER IS 10' DIA. X 10' TALL. 33. FILTER IS 10' DIA. X 10' TALL. 34. FILTER IS 10' DIA. X 10' TALL. 35. FILTER IS 10' DIA. X 10' TALL. 36. FILTER IS 10' DIA. X 10' TALL. 37. FILTER IS 10' DIA. X 10' TALL. 38. FILTER IS 10' DIA. X 10' TALL. 39. FILTER IS 10' DIA. X 10' TALL. 40. FILTER IS 10' DIA. X 10' TALL. 41. FILTER IS 10' DIA. X 10' TALL. 42. FILTER IS 10' DIA. X 10' TALL. 43. FILTER IS 10' DIA. X 10' TALL. 44. FILTER IS 10' DIA. X 10' TALL. 45. FILTER IS 10' DIA. X 10' TALL. 46. FILTER IS 10' DIA. X 10' TALL. 47. FILTER IS 10' DIA. X 10' TALL. 48. FILTER IS 10' DIA. X 10' TALL. 49. FILTER IS 10' DIA. X 10' TALL. 50. FILTER IS 10' DIA. X 10' TALL. 51. FILTER IS 10' DIA. X 10' TALL. 52. FILTER IS 10' DIA. X 10' TALL. 53. FILTER IS 10' DIA. X 10' TALL. 54. FILTER IS 10' DIA. X 10' TALL. 55. FILTER IS 10' DIA. X 10' TALL. 56. FILTER IS 10' DIA. X 10' TALL. 57. FILTER IS 10' DIA. X 10' TALL. 58. FILTER IS 10' DIA. X 10' TALL. 59. FILTER IS 10' DIA. X 10' TALL. 60. FILTER IS 10' DIA. X 10' TALL. 61. FILTER IS 10' DIA. X 10' TALL. 62. FILTER IS 10' DIA. X 10' TALL. 63. FILTER IS 10' DIA. X 10' TALL. 64. FILTER IS 10' DIA. X 10' TALL. 65. FILTER IS 10' DIA. X 10' TALL. 66. FILTER IS 10' DIA. X 10' TALL. 67. FILTER IS 10' DIA. X 10' TALL. 68. FILTER IS 10' DIA. X 10' TALL. 69. FILTER IS 10' DIA. X 10' TALL. 70. FILTER IS 10' DIA. X 10' TALL. 71. FILTER IS 10' DIA. X 10' TALL. 72. FILTER IS 10' DIA. X 10' TALL. 73. FILTER IS 10' DIA. X 10' TALL. 74. FILTER IS 10' DIA. X 10' TALL. 75. FILTER IS 10' DIA. X 10' TALL. 76. FILTER IS 10' DIA. X 10' TALL. 77. FILTER IS 10' DIA. X 10' TALL. 78. FILTER IS 10' DIA. X 10' TALL. 79. FILTER IS 10' DIA. X 10' TALL. 80. FILTER IS 10' DIA. X 10' TALL. 81. FILTER IS 10' DIA. X 10' TALL. 82. FILTER IS 10' DIA. X 10' TALL. 83. FILTER IS 10' DIA. X 10' TALL. 84. FILTER IS 10' DIA. X 10' TALL. 85. FILTER IS 10' DIA. X 10' TALL. 86. FILTER IS 10' DIA. X 10' TALL. 87. FILTER IS 10' DIA. X 10' TALL. 88. FILTER IS 10' DIA. X 10' TALL. 89. FILTER IS 10' DIA. X 10' TALL. 90. FILTER IS 10' DIA. X 10' TALL. 91. FILTER IS 10' DIA. X 10' TALL. 92. FILTER IS 10' DIA. X 10' TALL. 93. FILTER IS 10' DIA. X 10' TALL. 94. FILTER IS 10' DIA. X 10' TALL. 95. FILTER IS 10' DIA. X 10' TALL. 96. FILTER IS 10' DIA. X 10' TALL. 97. FILTER IS 10' DIA. X 10' TALL. 98. FILTER IS 10' DIA. X 10' TALL. 99. FILTER IS 10' DIA. X 10' TALL. 100. FILTER IS 10' DIA. X 10' TALL. 101. FILTER IS 10' DIA. X 10' TALL. 102. FILTER IS 10' DIA. X 10' TALL. 103. FILTER IS 10' DIA. X 10' TALL. 104. FILTER IS 10' DIA. X 10' TALL. 105. FILTER IS 10' DIA. X 10' TALL. 106. FILTER IS 10' DIA. X 10' TALL. 107. FILTER IS 10' DIA. X 10' TALL. 108. FILTER IS 10' DIA. X 10' TALL. 109. FILTER IS 10' DIA. X 10' TALL. 110. FILTER IS 10' DIA. X 10' TALL. 111. FILTER IS 10' DIA. X 10' TALL. 112. FILTER IS 10' DIA. X 10' TALL. 113. FILTER IS 10' DIA. X 10' TALL. 114. FILTER IS 10' DIA. X 10' TALL. 115. FILTER IS 10' DIA. X 10' TALL. 116. FILTER IS 10' DIA. X 10' TALL. 117. FILTER IS 10' DIA. X 10' TALL. 118. FILTER IS 10' DIA. X 10' TALL. 119. FILTER IS 10' DIA. X 10' TALL. 120. FILTER IS 10' DIA. X 10' TALL. 121. FILTER IS 10' DIA. X 10' TALL. 122. FILTER IS 10' DIA. X 10' TALL. 123. FILTER IS 10' DIA. X 10' TALL. 124. FILTER IS 10' DIA. X 10' TALL. 125. FILTER IS 10' DIA. X 10' TALL. 126. FILTER IS 10' DIA. X 10' TALL. 127. FILTER IS 10' DIA. X 10' TALL. 128. FILTER IS 10' DIA. X 10' TALL. 129. FILTER IS 10' DIA. X 10' TALL. 130. FILTER IS 10' DIA. X 10' TALL. 131. FILTER IS 10' DIA. X 10' TALL. 132. FILTER IS 10' DIA. X 10' TALL. 133. FILTER IS 10' DIA. X 10' TALL. 134. FILTER IS 10' DIA. X 10' TALL. 135. FILTER IS 10' DIA. X 10' TALL. 136. FILTER IS 10' DIA. X 10' TALL. 137. FILTER IS 10' DIA. X 10' TALL. 138. FILTER IS 10' DIA. X 10' TALL. 139. FILTER IS 10' DIA. X 10' TALL. 140. FILTER IS 10' DIA. X 10' TALL. 141. FILTER IS 10' DIA. X 10' TALL. 142. FILTER IS 10' DIA. X 10' TALL. 143. FILTER IS 10' DIA. X 10' TALL. 144. FILTER IS 10' DIA. X 10' TALL. 145. FILTER IS 10' DIA. X 10' TALL. 146. FILTER IS 10' DIA. X 10' TALL. 147. FILTER IS 10' DIA. X 10' TALL. 148. FILTER IS 10' DIA. X 10' TALL. 149. FILTER IS 10' DIA. X 10' TALL. 150. FILTER IS 10' DIA. X 10' TALL. 151. FILTER IS 10' DIA. X 10' TALL. 152. FILTER IS 10' DIA. X 10' TALL. 153. FILTER IS 10' DIA. X 10' TALL. 154. FILTER IS 10' DIA. X 10' TALL. 155. FILTER IS 10' DIA. X 10' TALL. 156. FILTER IS 10' DIA. X 10' TALL. 157. FILTER IS 10' DIA. X 10' TALL. 158. FILTER IS 10' DIA. X 10' TALL. 159. FILTER IS 10' DIA. X 10' TALL. 160. FILTER IS 10' DIA. X 10' TALL. 161. FILTER IS 10' DIA. X 10' TALL. 162. FILTER IS 10' DIA. X 10' TALL. 163. FILTER IS 10' DIA. X 10' TALL. 164. FILTER IS 10' DIA. X 10' TALL. 165. FILTER IS 10' DIA. X 10' TALL. 166. FILTER IS 10' DIA. X 10' TALL. 167. FILTER IS 10' DIA. X 10' TALL. 168. FILTER IS 10' DIA. X 10' TALL. 169. FILTER IS 10' DIA. X 10' TALL. 170. FILTER IS 10' DIA. X 10' TALL. 171. FILTER IS 10' DIA. X 10' TALL. 172. FILTER IS 10' DIA. X 10' TALL. 173. FILTER IS 10' DIA. X 10' TALL. 174. FILTER IS 10' DIA. X 10' TALL. 175. FILTER IS 10' DIA. X 10' TALL. 176. FILTER IS 10' DIA. X 10' TALL. 177. FILTER IS 10' DIA. X 10' TALL. 178. FILTER IS 10' DIA. X 10' TALL. 179. FILTER IS 10' DIA. X 10' TALL. 180. FILTER IS 10' DIA. X 10' TALL. 181. FILTER IS 10' DIA. X 10' TALL. 182. FILTER IS 10' DIA. X 10' TALL. 183. FILTER IS 10' DIA. X 10' TALL. 184. FILTER IS 10' DIA. X 10' TALL. 185. FILTER IS 10' DIA. X 10' TALL. 186. FILTER IS 10' DIA. X 10' TALL. 187. FILTER IS 10' DIA. X 10' TALL. 188. FILTER IS 10' DIA. X 10' TALL. 189. FILTER IS 10' DIA. X 10' TALL. 190. FILTER IS 10' DIA. X 10' TALL. 191. FILTER IS 10' DIA. X 10' TALL. 192. FILTER IS 10' DIA. X 10' TALL. 193. FILTER IS 10' DIA. X 10' TALL. 194. FILTER IS 10' DIA. X 10' TALL. 195. FILTER IS 10' DIA. X 10' TALL. 196. FILTER IS 10' DIA. X 10' TALL. 197. FILTER IS 10' DIA. X 10' TALL. 198. FILTER IS 10' DIA. X 10' TALL. 199. FILTER IS 10' DIA. X 10' TALL. 200. FILTER IS 10' DIA. X 10' TALL. 201. FILTER IS 10' DIA. X 10' TALL. 202. FILTER IS 10' DIA. X 10' TALL. 203. FILTER IS 10' DIA. X 10' TALL. 204. FILTER IS 10' DIA. X 10' TALL. 205. FILTER IS 10' DIA. X 10' TALL. 206. FILTER IS 10' DIA. X 10' TALL. 207. FILTER IS 10' DIA. X 10' TALL. 208. FILTER IS 10' DIA. X 10' TALL. 209. FILTER IS 10' DIA. X 10' TALL. 210. FILTER IS 10' DIA. X 10' TALL. 211. FILTER IS 10' DIA. X 10' TALL. 212. FILTER IS 10' DIA. X 10' TALL. 213. FILTER IS 10' DIA. X 10' TALL. 214. FILTER IS 10' DIA. X 10' TALL. 215. FILTER IS 10' DIA. X 10' TALL. 216. FILTER IS 10' DIA. X 10' TALL. 217. FILTER IS 10' DIA. X 10' TALL. 218. FILTER IS 10' DIA. X 10' TALL. 219. FILTER IS 10' DIA. X 10' TALL. 220. FILTER IS 10' DIA. X 10' TALL. 221. FILTER IS 10' DIA. X 10' TALL. 222. FILTER IS 10

Appendix 2: Construction Plans

Grading and Drainage Plans & Landscape Plans

EXISTING EASEMENT

- ⑤ AN EASEMENT FOR ROAD PURPOSES IN FAVOR OF A. J. VIELE, ET AL., RECORDED AUGUST 26, 1950, IN BOOK 117, PAGE 202, OF DEEDS.
- ⑥ AN EASEMENT FOR PUBLIC UTILITY PURPOSES IN FAVOR OF SOUTHERN CALIFORNIA EDISON COMPANY, RECORDED APRIL 17, 1958, IN BOOK 2257, PAGE 32, OFFICIAL RECORDS.
- ⑦ AN EASEMENT FOR PUBLIC UTILITY PURPOSES IN FAVOR OF CALIFORNIA WATER & TELEPHONE COMPANY, RECORDED AUGUST 26, 1958, IN BOOK 2324, PAGE 51, OFFICIAL RECORDS.
- ⑧ AN EASEMENT FOR PUBLIC UTILITY PURPOSES IN FAVOR OF SOUTHERN CALIFORNIA GAS COMPANY, RECORDED SEPTEMBER 11, 1970, AS INSTRUMENT NO. 89674, OFFICIAL RECORDS.
- ⑨ AN EASEMENT FOR SANITARY SEWER PURPOSES IN FAVOR OF THE CITY OF BEAUMONT, RECORDED DECEMBER 1, 1972, AS INSTRUMENT NO. 159870, OFFICIAL RECORDS.
- ⑩ A RECIPROCAL EASEMENT FOR INGRESS AND EGRESS PURPOSES IN FAVOR OF HI-SIXTY ASSOCIATES LP., RECORDED MAY 17, 1994, AS INSTRUMENT NO. 201445, OFFICIAL RECORDS (DOCUMENT CONTAINS AN OFF-SITE APPURTENANT EASEMENT BENEFITING THE SURVEYED PROPERTY, SHOWN HEREON).
- ⑪ AN EASEMENT FOR PUBLIC UTILITY PURPOSES IN FAVOR OF SOUTHERN CALIFORNIA EDISON COMPANY, RECORDED JUNE 28, 2007, AS INSTRUMENT NO. 2007-0421035, OFFICIAL RECORDS.
- ⑫ THE TERMS, PROVISIONS, AND EASEMENTS CONTAINED IN THE DOCUMENT ENTITLED "DECLARATION OF GRANT OF EASEMENT" RECORDED AUGUST 2, 2007, AS INSTRUMENT NO. 2007-0501538, OFFICIAL RECORDS (DOCUMENT CONTAINS AN OFF-SITE APPURTENANT EASEMENT BENEFITING THE SURVEYED PROPERTY, SHOWN HEREON).
- ⑬ AN EASEMENT FOR EMERGENCY ACCESS EASEMENT PURPOSES IN FAVOR OF HDP, LLC, RECORDED JUNE 15, 2016, AS INSTRUMENT NO. 2016-0244428, OFFICIAL RECORDS.

LEGAL DESCRIPTION

REAL PROPERTY IN THE CITY OF BEAUMONT, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

PARCEL A AS SHOWN ON LOT LINE OF ADJUSTMENT NO. 06-LLA-09, AS EVIDENCED BY DOCUMENT RECORDED AUGUST 02, 2007 AS INSTRUMENT NO. 2007-0501539 OF OFFICIAL RECORDS, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

THAT PORTION OF THE NORTH HALF OF THE NORTHWEST QUARTER OF SECTION 9, TOWNSHIP 3 SOUTH, RANGE 1 WEST, SAN BERNARDINO MERIDIAN IN THE CITY OF BEAUMONT, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA WHICH LIES WITHIN THE FOLLOWING BOUNDARIES:

BEGINNING AT A POINT IN THE NORTHWEST LINE OF SAID NORTHWEST QUARTER DISTANT SOUTH 00'30" E 39' WEST THEREON 233.25 FEET FROM THE NORTHWESTERLY CORNER OF SAID SECTION 9 TO THE NORTHWESTERLY CORNER OF THE CERTAIN PARCEL OF LAND DESCRIBED AS PARCEL 'B' IN DOCUMENT RECORDED JUNE 10, 2003 IN INSTRUMENT NO. 2003-444207 OF OFFICIAL RECORDS, RECORDS OF SAID COUNTY, SAID LAST MENTIONED CORNER ALSO BEING A POINT IN THE SOUTHERLY BOUNDARY OF CALIFORNIA STATE HIGHWAY 60;

THENCE ALONG THE NORtherly BOUNDARY OF SAID CERTAIN PARCEL OF LAND AND ALONG SAID SOUTHERLY BOUNDARY THE FOLLOWING COURSES:

THENCE 86°49'31" EAST 65.12 FEET;
THENCE NORTH 83°14'55" EAST 203.04 FEET;
THENCE SOUTH 89°06'58" EAST 300.24 FEET;
THENCE SOUTH 86°49'31" EAST 600.00 FEET;

THENCE SOUTH 89°27'35" EAST 48.60 FEET TO A LINE PARALLEL WITH AND 1130.00 FEET WESTERLY, MEASURED AT RIGHT ANGLES, FROM THE WESTERLY LINE OF THAT CERTAIN PARCEL OF LAND DESCRIBED IN DEED RECORDED JUNE 13, 2003 AS INSTRUMENT NO. 2003-435769, OF SAID OF OFFICIAL RECORDS;

THENCE ALONG SAID PARALLEL LINE, SOUTH 00°23'03" WEST 1112.14 FEET TO A POINT IN THE NORtherly LINE OF PARCEL MAP NO. 25090 AS PER MAP FILED IN BOOK 165 PAGES 69, 70 AND 71, OF PARCEL MAPS, RECORDS OF SAID COUNTY;

THENCE ALONG SAID LAST MENTIONED NORtherly LINE, NORTH 87°34'43" WEST 1197.78 FEET TO THE WESTERLY LINE OF SAID NORTHWEST QUARTER;

THENCE ALONG SAID LAST MENTIONED WESTERLY LINE, NORTH 00°30'39" WEST 1087.21 FEET TO "POINT OF BEGINNING".

APN: 417-020-070

BENCH MARK

BENCHMARK: CITY OF BEAUMONT MONUMENT "N-71 RESET 1960"
ELEVATION: 2573.72 (NGVD29)

70 FEET NE OF THE NE CORNER OF THE SOUTHERN PACIFIC COMPANY RAILROAD STATION, 170 YARDS NW OF CALIFORNIA STREET ON THE SOUTHERN SIDE, THE NEW HIGHWAY 60, 70 AND 99 BEING CONSTRUCTED THROUGH BEAUMONT, 21 FEET NORTHERLY OF THE CENTERLINE OF THE NEW 4TH STREET, 2 FEET SOUTHEAST FROM THE WESTERLY END OF THE WALL 2' BELOW THE TOP OF THE WALL 2' ABOVE THE CURB AND SET IN TOP OF THE CONCRETE POST.

BASIS OF BEARINGS:

BASIS OF BEARINGS: BEARINGS SHOWN HEREON ARE BASED ON THE BEARING BETWEEN GPS STATION NO. P584 AND GPS STATION NO. CRFP BEING NORTH 39°40'49" WEST PER RECORDS ON FILE IN THE OFFICE OF THE COUNTY RECORDER.

UTILITY CONTACTS

ELECTRICITY

SOUTHERN CALIFORNIA EDISON
1351 E FRANCIS STREET
ONTARIO, CA 91761
(909) 942-8423

WATER

BEAUMONT-CHERRY VALLEY WATER DISTRICT
560 MAGNOLIA AVE
BEAUMONT, CA 92223
(951) 845-9581

GAS

SOUTHERN CALIFORNIA GAS CO.
1891 W LUJONA AVENUE
REDLANDS, CA 92374
(800) 427-2200

CHARTER COMMUNICATIONS
1777 CENTER COURT DRIVE NORTH, 8TH FLOOR
CERRITOS, CA 90703
(562) 677-0325

SEWER

CITY BEAUMONT

550 E 6TH STREET

BEAUMONT, CA 92223

(951) 769-8522

CABLE

PP CABLES

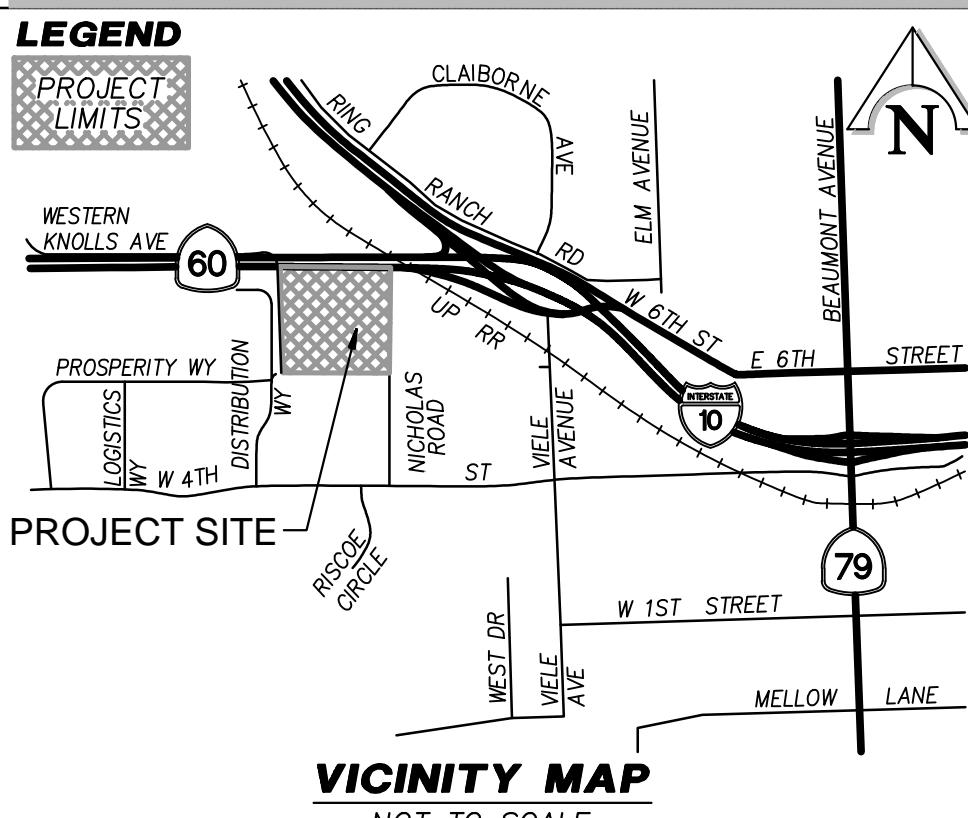
1777 CENTER COURT DRIVE NORTH, 8TH FLOOR

CERRITOS, CA 90703

(562) 677-0325

TELEPHONE

REGULAR COMMUNICATIONS


762 W KETTERING AVENUE

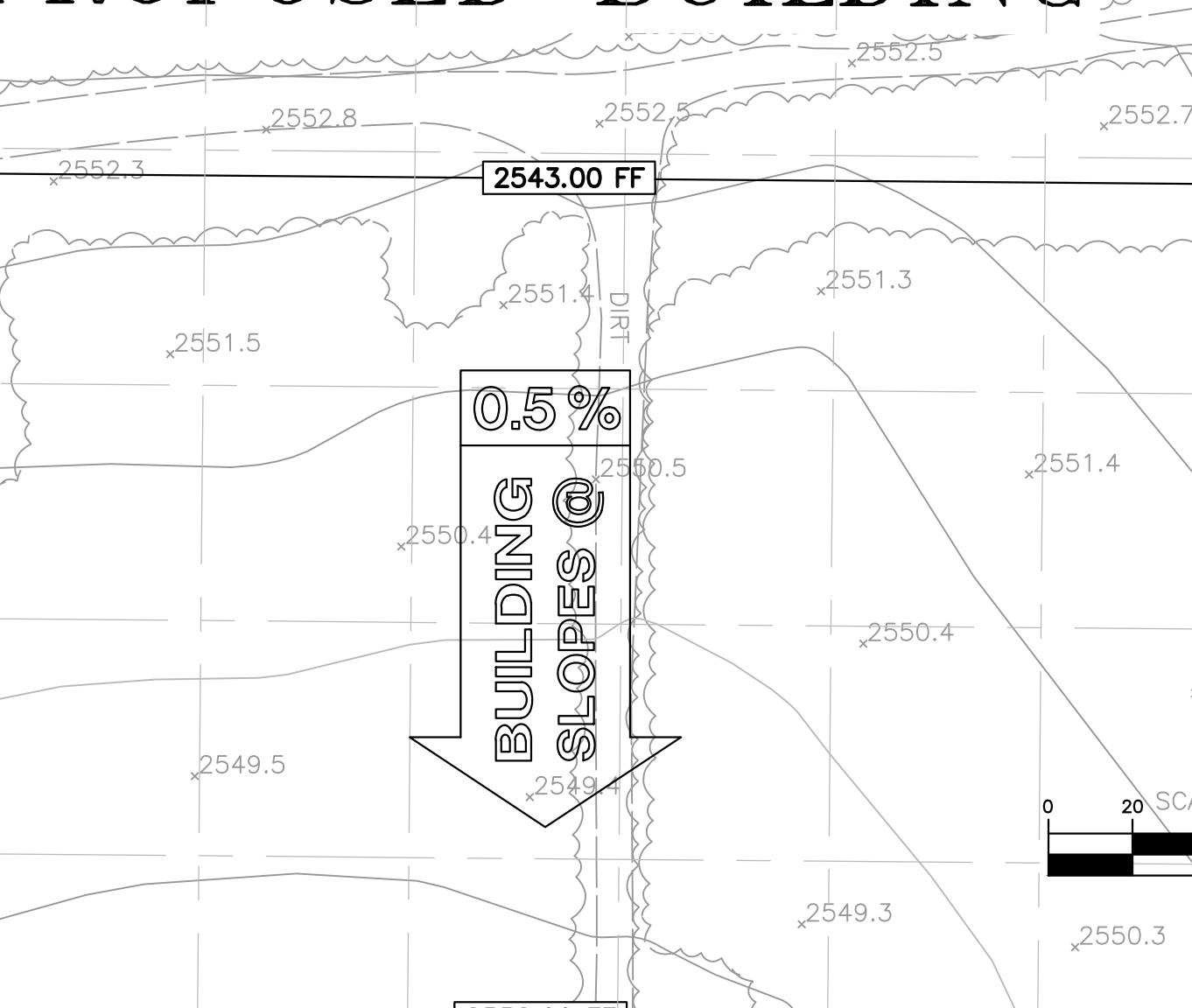
LANCASTER, CA 93534

(661) 949-8604

LEGEND

SD	PROPOSED STORM DRAIN	FL	FLOWLINE
S	PROPOSED SEWER	GB	GRADE BREAK
W	PROPOSED WATER	INV	INVERT
—	GRADE BREAK	LA	LANDSCAPE AREA
- - -	RIDGE LINE	LP	LOW POINT
- - -	RIDGE LINE	LT	LEFT
—	PROPERTY LINE	N.A.P.	NOT A PART
—	ADA PATH OF TRAVEL	P.I.P.	PROTECT IN PLACE
—	LANDSCAPE EASEMENT	PP	POWER POLE
—	PROPOSED	PL	PROPERTY LINE
—	PROPOSED	PRO	PROPOSED
—	PROPOSED CURB OPENING INLET	RD	ROOF DRAIN
CF	CURB FACE	RT	RIGHT
CB	CATCH BASIN	R/W	RIGHT-OF-WAY
CAG	CURB & GUTTER	STD	STANDARD
CDS	CONTECH CDS UNIT	STL	STREET LIGHT
CL	CENTERLINE	TE	TRASH ENCLOSURE
DWY	DRIVeway	TP	TOP OF PAVEMENT
EXIST	EXISTING	TC	TOP OF CURB
EG	EXISTING GROUND	TG	TOP OF GRATE
FF	FINISHED FLOOR	EP	EDGE OF PAVEMENT
FS	FINISHED SURFACE	WSE	WATER SURFACE ELEVATION

PRELIMINARY EARTHWORK VOLUMES	
CUT (CY)	FILL (CY)
RAW VOLUMES:	96,208 69,516
(-) Shrinkage (3%):	7,697 -
(+) Subsidence (0.1):	- 4,986
Subtotal:	88,512 74,502
Overexcavation Raw:	114,074 114,074
(-) Shrinkage:	9,126 -
Subtotal:	104,948 104,948
Additional Volumes:	2,000
Total:	195,460 188,577
6,883 CY LONG	
WILL BE CLOSE TO BALANCE BY RAISING ANOTHER 0.1'. WILL BE ADJUSTED DURING CDS.	


EARTHWORK NOTE:
EARTHWORK VOLUMES SHOWN HERE ARE FOR FEE PURPOSES ONLY - NOT FOR BIDDING. CONTRACTOR SHALL PERFORM INDEPENDENT EARTHWORK CALCULATIONS AND BID A COMPLETE JOB.

SITE NOTES

1. THE PROPERTY SHOWN HEREON IS LOCATED WITHIN UNSHADED FLOOD ZONE X. PANEL 06065C08110 EFF. 08/28/2008.
2. THE PROPERTY DESCRIBED AND SHOWN HEREON CONTAINS 30.902 ACRES, MORE OR LESS.
3. AREA TO BE DEVELOPED: 29.8± AC
3. ZONING INFORMATION SHOWN WAS OBTAINED FROM THE CITY OF BEAUMONT PLANNING DEPARTMENT WEBSITE:

EX. ZONING INFORMATION: MANUFACTURING
PROP. ZONING: TO REMAIN THE SAME

PROPOSED BUILDING

Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data

**GEOTECHNICAL INVESTIGATION
PROPOSED INDUSTRIAL BUILDING**

Nicholas Road, North of West 4th Street
Beaumont, California
for
Trammell Crow Company

November 22, 2021

Trammell Crow Company
3501 Jamboree Road, Suite 230
Newport Beach, California 92660

Attention: Mr. Kyle Dorand
Vice President - Development

Project No.: **21G254-1**

Subject: **Geotechnical Investigation**
Proposed Industrial Building
Nicholas Road, North of West 4th Street
Beaumont, California

Dear Mr. Dorand:

In accordance with your request, we have conducted a geotechnical investigation at the subject site. We are pleased to present this report summarizing the conclusions and recommendations developed from our investigation.

We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

Respectfully Submitted,

SOUTHERN CALIFORNIA GEOTECHNICAL, INC.

Gregory K. Mitchell, GE 2364
Principal Engineer

Robert G. Trazo, GE 2655
Principal Engineer

Distribution: (1) Addressee

TABLE OF CONTENTS

<u>1.0 EXECUTIVE SUMMARY</u>	<u>1</u>
<u>2.0 SCOPE OF SERVICES</u>	<u>3</u>
<u>3.0 SITE AND PROJECT DESCRIPTION</u>	<u>4</u>
3.1 Site Conditions	4
3.2 Proposed Development	4
<u>4.0 SUBSURFACE EXPLORATION</u>	<u>6</u>
4.1 Scope of Exploration/Sampling Methods	6
4.2 Geotechnical Conditions	6
<u>5.0 LABORATORY TESTING</u>	<u>8</u>
<u>6.0 CONCLUSIONS AND RECOMMENDATIONS</u>	<u>10</u>
6.1 Seismic Design Considerations	10
6.2 Geotechnical Design Considerations	12
6.3 Site Grading Recommendations	14
6.4 Construction Considerations	18
6.5 Foundation Design and Construction	18
6.6 Floor Slab Design and Construction	20
6.7 Exterior Flatwork Design and Construction	21
6.8 Retaining Wall Design and Construction	21
6.9 Pavement Design Parameters	24
<u>7.0 GENERAL COMMENTS</u>	<u>26</u>
<u>APPENDICES</u>	
A Plate 1: Site Location Map	
Plate 2: Boring Location Plan	
B Boring Logs	
C Laboratory Test Results	
D Grading Guide Specifications	
E Seismic Design Parameters	

1.0 EXECUTIVE SUMMARY

Presented below is a brief summary of the conclusions and recommendations of this investigation. Since this summary is not all inclusive, it should be read in complete context with the entire report.

Geotechnical Design Considerations

- Artificial fill soils were encountered at most of the boring locations, extending from the ground surface to depths of $2\frac{1}{2}$ to $4\frac{1}{2}\pm$ feet. Additional soils classified as possible fill extend to depths of up to $6\frac{1}{2}\pm$ feet. The existing fill soils are considered to represent undocumented fill. These soils, in their present condition, are not considered suitable for support of the foundation loads of the new structure.
- The artificial fill soils are underlain by native alluvial soils. Results of laboratory testing indicate that the upper 5 to $6\pm$ feet of native alluvium possesses unfavorable consolidation/collapse characteristics.
- Remedial grading will be necessary to remove the undocumented fill soils in their entirety, the upper portion of the near-surface native alluvial soils, and any soils disturbed during the demolition process, and replace these materials as compacted structural fill soils.
- Based on conditions encountered at the boring locations and maps published by Riverside County, liquefaction is not a significant design concern for this project.

Site Preparation

- The site plan provided to our office indicates that the existing structures and pavements at the subject site will be demolished in order to facilitate the construction of the proposed development. Demolition should include all foundations, floor slabs, pavements, utilities and any other subsurface improvements that will not remain in place with the new development. Debris resultant from demolition should be disposed of off-site. Alternatively, concrete and asphalt debris may be pulverized to a maximum 2-inch particle size, and incorporated into new structural fills or it may be processed into CMB.
- Initial site stripping should include all vegetation and topsoil. Removal of numerous trees will be required, due to the current usage of the site as an orchard. Tree removal should include all significant root masses.
- Remedial grading is recommended to be performed within the proposed building area in order to remove all of the undocumented fill soils, the upper portion of the near-surface native alluvial soils, and any soils disturbed during the demolition process. The soils within the proposed building areas should be overexcavated to a depth of 5 feet below existing grade and to a depth of at least 3 feet below proposed building pad subgrade elevations. The depth of overexcavation should also be sufficient to remove any existing fill soils.
- The proposed foundation influence zones should be overexcavated to a depth of at least 3 feet below proposed foundation bearing grade.
- Following completion of the overexcavation, the exposed soils should be scarified to a depth of at least 12 inches and moisture conditioned to at least 2 to 4 percent above optimum moisture content. The overexcavation subgrade soils should then be recompacted to at least 90 percent of the ASTM D-1557 maximum dry density. The previously excavated soils may then be replaced as compacted structural fill.

- The new pavement and flatwork subgrade soils are recommended to be scarified to a depth of 12± inches, moisture conditioned and recompacted to at least 90 percent of the ASTM D-1557 maximum dry density.

Building Foundations

- Conventional shallow foundations, supported in newly placed compacted fill.
- 3,000 lbs/ft² maximum allowable soil bearing pressure.
- Reinforcement consisting of at least four (4) No. 5 rebars (2 top and 2 bottom) in strip footings, due to the presence of potentially expansive soils. Additional reinforcement may be necessary for structural considerations.

Building Floor Slab

- Conventional Slab-on-Grade: minimum 6 inches thick.
- Modulus of Subgrade Reaction: k = 150 psi/in.
- Reinforcement is not expected to be necessary for geotechnical considerations. The actual thickness and reinforcement of the floor slab should be determined by the structural engineer.

Pavements Design Recommendations

ASPHALT PAVEMENTS (R = 30)					
Materials	Thickness (inches)				
	Auto Parking and Auto Drive Lanes (TI = 4.0 to 5.0)	Truck Traffic			
		TI = 6.0	TI = 7.0	TI = 8.0	TI = 9.0
Asphalt Concrete	3	3½	4	5	5½
Aggregate Base	6	8	10	11	13
Compacted Subgrade	12	12	12	12	12

PORLTAND CEMENT CONCRETE PAVEMENTS (R = 30)				
Materials	Thickness (inches)			
	Autos and Light Truck Traffic (TI = 6.0)	Truck Traffic		
		TI = 7.0	TI = 8.0	TI = 9.0
PCC	5	5½	6½	8
Compacted Subgrade (95% minimum compaction)	12	12	12	12

2.0 SCOPE OF SERVICES

The scope of services performed for this project was in accordance with our Proposal No. 21P456, dated October 13, 2021. The scope of services included a visual site reconnaissance, subsurface exploration, field and laboratory testing, and geotechnical engineering analysis to provide criteria for preparing the design of the building foundations, building floor slabs, and parking lot pavements along with site preparation recommendations and construction considerations for the proposed development. The evaluation of the environmental aspects of this site was beyond the scope of services for this geotechnical investigation.

3.0 SITE AND PROJECT DESCRIPTION

3.1 Site Conditions

The subject site is located immediately northwest of the terminus of the Nicholas Road cul-de-sac, $1300\pm$ feet north of the intersection with West 4th Street in Beaumont, California. The site is bounded to the north by the Moreno Valley Freeway (60), to the east by an existing industrial building, to the south by an existing commercial/industrial building and vacant land and to the west by Western Knolls Avenue and an Amazon distribution facility. The general location of the site is illustrated on the Site Location Map, included as Plate 1 of this report.

The site consists of a roughly rectangular-shaped parcel, $30.9\pm$ acres in size. The site is presently developed as the Dowling Fruit Orchard. Three (3) buildings, ranging in size from 4,500 to $5,200\pm$ ft², are located in the northwest area of the site. Two (2) of the buildings are of wood-frame and stucco construction. The remaining building is of steel frame and metal panel construction. Ground surface cover on the west side of the buildings consists of Portland cement concrete and asphaltic concrete. The pavements are in fair condition with moderate cracking throughout. One (1) above-ground storage (AST) is located just east of the aforementioned buildings. Additionally, one (1) shade structure is also located in the northwest area of the site. The shade structure is of wood frame construction with a metal panel roof. This area is used for storing farming equipment. One (1) single-family residence (SFR) is located near the middle of the western property line. Ground surface cover surrounding the single-family residence consists of exposed soil with several large trees. A single dry-well is located in the central area of the site. The remaining areas of the site are presently planted with several types of medium to large fruit trees. Ground surface cover in these areas consists of exposed soil.

Detailed topographic information was not available at the time of this report. Based on elevations obtained from Google Earth and visual observations made at the time of the subsurface investigation, the southern three-quarters of the site slopes downward to the south at a gradient of $2\pm$ percent. The northern quarter of the site slopes downward to the north at a gradient of $1\pm$ percent.

3.2 Proposed Development

Based on a conceptual site plan provided to our office by the client, the site will be developed with one (1) new industrial building, $600,000\pm$ ft² in size, located in the central area of the site. The building will be constructed in a cross-dock configuration, with docks along most of the east and west building walls. It is expected that the building will be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete pavements in the loading dock areas, and limited areas of concrete flatwork and landscape planters.

Detailed structural information has not been provided. It is assumed the building will be a single-story structure of tilt-up concrete construction, possibly incorporating limited areas of second floor mezzanine, typically supported on conventional shallow foundations with a concrete slab-on-

grade floor. Based on the assumed construction, maximum column and wall loads are expected to be on the order of 100 kips and 4 to 7 kips per linear foot, respectively.

No significant amounts of below grade construction, such as crawl spaces or new basements, are expected to be included in the proposed development. Based on the assumed topography, cuts and fills of up to $5\pm$ feet are expected to be necessary to achieve the proposed site grades.

4.0 SUBSURFACE EXPLORATION

4.1 Scope of Exploration/Sampling Methods

The subsurface exploration for this project consisted of seven (7) borings advanced to depths of 15 to $50\pm$ feet below the existing site grades. Two (2) of the borings were advanced to a depth of $50\pm$ feet below ground surface, as a part of the preliminary liquefaction evaluation. All of the borings were logged during drilling by a member of our staff.

The borings were advanced with hollow stem augers, by a conventional truck-mounted drilling rig. Representative bulk and relatively undisturbed soil samples were taken during drilling. Relatively undisturbed soil samples were taken with a split barrel "California Sampler" containing a series of one inch long, $2.416\pm$ inch diameter brass rings. This sampling method is described in ASTM Test Method D-3550. In-situ samples were also taken using a $1.4\pm$ inch inside diameter split spoon sampler, in general accordance with ASTM D-1586. Both of these samplers are driven into the ground with successive blows of a 140-pound weight falling 30 inches. The blow counts obtained during driving are recorded for further analysis. Bulk samples were collected in plastic bags to retain their original moisture content. The relatively undisturbed ring samples were placed in molded plastic sleeves that were then sealed and transported to our laboratory.

The approximate locations of the borings are indicated on the Boring Location Plan, included as Plate 2 in Appendix A of this report. The Boring Logs, which illustrate the conditions encountered at the boring locations, as well as the results of some of the laboratory testing, are included in Appendix B.

4.2 Geotechnical Conditions

Gravel Surface

Boring No. B-1 encountered a $1\pm$ inch-thick layer of open graded gravel at the ground surface.

Artificial Fill

Artificial fill soils were encountered at the ground surface (or beneath the gravel surface) at Boring Nos. B-1 through B-6, extending from depths of $2\frac{1}{2}$ to $4\frac{1}{2}\pm$ feet below ground surface. The fill soils generally consist of slightly cemented, medium dense to dense clayey fine sands, silty fine sands and fine sandy silts, and very stiff fine sandy clays. The fill soils possess a disturbed and mottled appearance, resulting in their classification as artificial fill.

Possible fill soils were encountered beneath the fill soils at Boring Nos. B-5 and B-6, extending to depths of $5\frac{1}{2}$ to $6\frac{1}{2}\pm$ feet below ground surface. The possible fill soils consist of very stiff fine sandy clay and loose to medium dense silty fine sand. These soils differ in appearance to the near surface alluvium present at similar depths at the other borings, but also lack obvious indicators

of fill, such as a disturbed appearance or artificial debris content. The possible fill soils should be evaluated at the time of grading to determine if they consist of artificial fill materials.

Alluvium

Native alluvium was encountered at the ground surface at Boring No. B-7 and beneath the fill and possible fill soils at the remaining borings, extending to at least the maximum depth explored of $50\pm$ feet below ground surface. The near-surface alluvial soils, within the upper $4\frac{1}{2}$ to $8\pm$ feet, generally consist of stiff fine sandy clay and medium dense clayey fine sand. These soils possess slight cementation. At depths greater than $8\pm$ feet, the alluvial soils generally consist of medium dense to dense silty fine sand and fine sandy silt. These soils possess trace to some clay and occasional cementation. Occasional layers of medium dense to very dense fine to medium sand, fine to coarse sand and very stiff clayey silt were encountered between depths of 17 to $50\pm$ feet below ground surface.

Groundwater

Free water was not encountered during the drilling of any of the borings. Based on the lack of any water within the borings, and the moisture contents of the recovered soil samples, the static groundwater table is considered to have existed at a depth in excess of $50\pm$ feet at the time of the subsurface exploration.

Historic and recent water level data was obtained from the California Department of Water Resources website, <http://www.water.ca.gov/waterdatalibrary/>. One monitoring well on record is located $1,312\pm$ feet east of the site. Water level readings within this monitoring well indicate a high groundwater level of $226\pm$ feet below ground surface in November 1991, and $149\pm$ feet below the ground surface in October 2010.

5.0 LABORATORY TESTING

The soil samples recovered from the subsurface exploration were returned to our laboratory for further testing to determine selected physical and engineering properties of the soils. The tests are briefly discussed below. It should be noted that the test results are specific to the actual samples tested, and variations could be expected at other locations and depths.

Classification

All recovered soil samples were classified using the Unified Soil Classification System (USCS), in accordance with ASTM D-2488. Field identifications were then supplemented with additional visual classifications and/or by laboratory testing. The USCS classifications are shown on the Boring Logs and are periodically referenced throughout this report.

Density and Moisture Content

The density has been determined for selected relatively undisturbed ring samples. These densities were determined in general accordance with the method presented in ASTM D-2937. The results are recorded as dry unit weight in pounds per cubic foot. The moisture contents are determined in accordance with ASTM D-2216, and are expressed as a percentage of the dry weight. These test results are presented on the Boring Logs.

Consolidation

Selected soil samples have been tested to determine their consolidation and collapse potential, in accordance with ASTM D-2435. The testing apparatus is designed to accept either natural or remolded samples in a one-inch high ring, approximately 2.416 inches in diameter. Each sample is then loaded incrementally in a geometric progression and the resulting deflection is recorded at selected time intervals. Porous stones are in contact with the top and bottom of the sample to permit the addition or release of pore water. The samples are typically inundated with water at an intermediate load to determine their potential for collapse or heave. The results of the consolidation testing are plotted on Plates C-1 through C-8 in Appendix C of this report.

Maximum Dry Density and Optimum Moisture Content

A representative bulk sample has been tested for its maximum dry density and optimum moisture content. The results have been obtained using the Modified Proctor procedure, per ASTM D-1557, and are presented on Plate C-9 in Appendix C of this report. These tests are generally used to compare the dry densities of undisturbed field samples, and for later compaction testing. Additional testing of other soil types or soil mixes may be necessary at a later date.

Soluble Sulfates

Representative samples of the near-surface soils were submitted to a subcontracted analytical laboratory for determination of soluble sulfate content. Soluble sulfates are naturally present in soils, and if the concentration is high enough, can result in degradation of concrete which comes into contact with these soils. The result of the soluble sulfate testing is not yet available. The

results of the soluble sulfate testing are presented below, and are discussed further in a subsequent section of this report.

<u>Sample Identification</u>	<u>Soluble Sulfates (%)</u>	<u>Sulfate Classification</u>
B-3 @ 0 to 5 feet	0.005	Not Applicable (S0)
B-5 @ 0 to 5 feet	0.001	Not Applicable (S0)

Corrosivity Testing

Representative bulk samples of the near-surface soils were submitted to a subcontracted corrosion engineering laboratory to identify potentially corrosive characteristics with respect to common construction materials. The corrosivity testing included a determination of the electrical resistivity, pH, and chloride and nitrate concentrations of the soils, as well as other tests. The results of some of these tests are presented below.

<u>Sample Identification</u>	<u>Saturated Resistivity (ohm-cm)</u>	<u>pH</u>	<u>Chlorides (mg/kg)</u>	<u>Nitrates (mg/kg)</u>
B-3 @ 0 to 5 feet	1,240	7.4	54	162
B-5 @ 0 to 5 feet	3,880	7.0	3.9	19

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of our review, field exploration, laboratory testing and geotechnical analysis, the proposed development is considered feasible from a geotechnical standpoint. The recommendations contained in this report should be taken into the design, construction, and grading considerations.

The recommendations are contingent upon all grading and foundation construction activities being monitored by the geotechnical engineer of record. The recommendations are provided with the assumption that an adequate program of client consultation, construction monitoring, and testing will be performed during the final design and construction phases to verify compliance with these recommendations. Maintaining Southern California Geotechnical, Inc., (SCG) as the geotechnical consultant from the beginning to the end of the project will provide continuity of services. The geotechnical engineering firm providing testing and observation services shall assume the responsibility of Geotechnical Engineer of Record.

The Grading Guide Specifications, included as Appendix D, should be considered part of this report, and should be incorporated into the project specifications. The contractor and/or owner of the development should bring to the attention of the geotechnical engineer any conditions that differ from those stated in this report, or which may be detrimental for the development.

6.1 Seismic Design Considerations

The subject site is located in an area which is subject to strong ground motions due to earthquakes. The performance of a site-specific seismic hazards analysis was beyond the scope of this investigation. However, numerous faults capable of producing significant ground motions are located near the subject site. Due to economic considerations, it is not generally considered reasonable to design a structure that is not susceptible to earthquake damage. Therefore, significant damage to structures may be unavoidable during large earthquakes. The proposed structures should, however, be designed to resist structural collapse and thereby provide reasonable protection from serious injury, catastrophic property damage and loss of life.

Faulting and Seismicity

Research of available maps indicates that the subject site is not located within an Alquist-Priolo Earthquake Fault Zone. Furthermore, SCG did not identify any evidence of faulting during the geotechnical investigation. Therefore, the possibility of significant fault rupture on the site is considered to be low.

The potential for other geologic hazards such as seismically induced settlement, lateral spreading, tsunamis, inundation, seiches, flooding, and subsidence affecting the site is considered low.

Seismic Design Parameters

The 2019 California Building Code (CBC) provides procedures for earthquake resistant structural design that include considerations for on-site soil conditions, occupancy, and the configuration of

the structure including the structural system and height. The seismic design parameters presented below are based on the soil profile and the proximity of known faults with respect to the subject site.

Based on standards in place at the time of this report, the proposed development is expected to be designed in accordance with the requirements of the 2019 edition of the California Building Code (CBC), which was adopted on January 1, 2020.

The 2019 CBC Seismic Design Parameters have been generated using the [SEAOC/OSHPD Seismic Design Maps Tool](http://www.seismicmaps.org), a web-based software application available at the website www.seismicmaps.org. This software application calculates seismic design parameters in accordance with several building code reference documents, including ASCE 7-16, upon which the 2019 CBC is based. The application utilizes a database of risk-targeted maximum considered earthquake (MCE_R) site accelerations at 0.01-degree intervals for each of the code documents. The tables below were created using data obtained from the application. The output generated from this program is included as Plate E-1 in Appendix E of this report.

The 2019 CBC requires that a site-specific ground motion study be performed in accordance with Section 11.4.8 of ASCE 7-16 for Site Class D sites with a mapped S_1 value greater than 0.2. However, Section 11.4.8 of ASCE 7-16 also indicates an exception to the requirement for a site-specific ground motion hazard analysis for certain structures on Site Class D sites. The commentary for Section 11 of ASCE 7-16 (Page 534 of Section C11 of ASCE 7-16) indicates that "In general, this exception effectively limits the requirements for site-specific hazard analysis to very tall and or flexible structures at Site Class D sites." **Based on our understanding of the proposed development, the seismic design parameters presented below were calculated assuming that the exception in Section 11.4.8 applies to the proposed structure at this site. However, the structural engineer should verify that this exception is applicable to the proposed structure.** Based on the exception, the spectral response accelerations presented below were calculated using the site coefficients (F_a and F_v) from Tables 1613.2.3(1) and 1613.2.3(2) presented in Section 16.4.4 of the 2019 CBC.

2019 CBC SEISMIC DESIGN PARAMETERS

Parameter		Value
Mapped Spectral Acceleration at 0.2 sec Period	S_s	1.658
Mapped Spectral Acceleration at 1.0 sec Period	S_1	0.600
Site Class	---	D
Site Modified Spectral Acceleration at 0.2 sec Period	S_{MS}	1.658
Site Modified Spectral Acceleration at 1.0 sec Period	S_{M1}	1.020
Design Spectral Acceleration at 0.2 sec Period	S_{DS}	1.105
Design Spectral Acceleration at 1.0 sec Period	S_{D1}	0.680

It should be noted that the site coefficient F_v and the parameters S_{M1} and S_{D1} were not included in the [SEAOC/OSHPD Seismic Design Maps Tool](http://www.seismicmaps.org) output for the 2019 CBC. We calculated these parameters-based on Table 1613.2.3(2) in Section 16.4.4 of the 2019 CBC using the value of S_1 .

obtained from the [Seismic Design Maps Tool](#), assuming that a site-specific ground motion hazards analysis is not required for the proposed buildings at this site.

Liquefaction

Liquefaction is the loss of strength in generally cohesionless, saturated soils when the pore-water pressure induced in the soil by a seismic event becomes equal to or exceeds the overburden pressure. The primary factors which influence the potential for liquefaction include groundwater table elevation, soil type and plasticity characteristics, relative density of the soil, initial confining pressure, and intensity and duration of ground shaking. The depth within which the occurrence of liquefaction may impact surface improvements is generally identified as the upper 50 feet below the existing ground surface. Liquefaction potential is greater in saturated, loose, poorly graded fine sands with a mean (d_{50}) grain size in the range of 0.075 to 0.2 mm (Seed and Idriss, 1971). Non-sensitive clayey (cohesive) soils which possess a plasticity index of at least 18 (Bray and Sancio, 2006) are generally not considered to be susceptible to liquefaction, nor are those soils which are above the historic static groundwater table.

The Riverside County GIS website indicates that the subject site is located within a zone of low liquefaction susceptibility. In addition, the subsurface conditions encountered at the boring locations are not considered to be conducive to liquefaction. These conditions consist of moderate to high strength native alluvial soils and no evidence of a long-term groundwater table within 50 feet of the ground surface. In addition, research of available well data indicates that the groundwater depths in the area of the site are more than 100 feet below grade. Based on these considerations, liquefaction is not considered to be a design concern for this project.

6.2 Geotechnical Design Considerations

General

Most of the borings encountered artificial fill materials, extending to depths of $2\frac{1}{2}$ to $4\frac{1}{2}\pm$ feet. Based on their strength characteristics and a lack of documentation regarding the placement and compaction of the existing fill materials, these soils are considered to consist of undocumented fill, likely placed during previous agricultural operations at the site. Therefore, these materials are not suitable for the support of the foundation loads of the proposed building. In addition, the near surface fill and alluvium possess a potential for significant consolidation and/or collapse when exposed to load increases in the range of those that will be exerted by the foundations of the new structure. Finally, significant disturbance the upper 3 to 4 feet of soil is expected to occur during removal of the trees within the existing orchard areas. Based on these conditions, remedial grading is considered warranted within the proposed building area to completely remove the artificial fill soils and the upper portion of the near-surface native alluvium and replace these soils as compacted structural fill.

Settlement

The recommended remedial grading will remove all of the existing fill soils and a portion of the near-surface native alluvium, including collapsible/compressible soils, and replace these soils as compacted structural fill. The native soils that will remain in place below the recommended depth

of overexcavation will not be subject to significant load increases from the foundations of the new structure. Provided that the recommended remedial grading is completed, the post-construction settlement of the proposed structure is expected to be within tolerable limits.

Expansion

Laboratory testing performed on representative samples of the near-surface soils indicates that these materials possess a low expansion potential (EI = 39). Based on the presence of potentially expansive soils at this site, care should be given to proper moisture conditioning the building pad subgrade soils to a moisture content of 2 to 4 percent above the ASTM D-1557 optimum during site grading. It is recommended that additional expansion index testing be conducted at the completion of rough grading to verify the expansion potential of the as-graded building pad.

Soluble Sulfates

The results of the soluble sulfate testing indicate that the tested soil samples possess levels of soluble sulfates that are considered to be "not applicable" (S0) with respect to the American Concrete Institute (ACI) Publication 318-14 Building Code Requirements for Structural Concrete and Commentary, Section 4.3. Therefore, specialized concrete mix designs are not considered to be necessary, with regard to sulfate protection purposes. It is, however, recommended that additional soluble sulfate testing be conducted at the completion of rough grading to verify the soluble sulfate concentrations of the soils which are present at pad grade within the building area.

Corrosion Potential

The results of laboratory testing indicate that the on-site soils possess saturated resistivity in the range of 1,240 to 3,880 ohm-cm, and pH value of 7.0 and 7.4. These test results have been evaluated in accordance with guidelines published by the Ductile Iron Pipe Research Association (DIPRA). The DIPRA guidelines consist of a point system by which characteristics of the soils are used to quantify the corrosivity characteristics of the site. Resistivity and pH are two of the five factors that enter into the evaluation procedure. Redox potential, relative soil moisture content and sulfides are also included. Although sulfide testing was not part of the scope of services for this project, we have evaluated the corrosivity characteristics of the on-site soils using resistivity, pH and moisture content. **Based on these factors, and utilizing the DIPRA procedure, the on-site soils are considered to be corrosive to ductile iron pipe. Therefore, polyethylene encasement or some other appropriate method of protection is expected to be required for iron pipes.**

A relatively low concentrations (3.9 and 54 mg/kg) of chlorides were detected in the samples submitted for corrosivity testing. In general, soils possessing chloride concentrations in excess of 500 parts per million (ppm) are considered to be corrosive with respect to steel reinforcement within reinforced concrete. Based on the lack of any significant chlorides in the tested sample, the site is considered to have a C1 chloride exposure in accordance with the American Concrete Institute (ACI) Publication 318 Building Code Requirements for Structural Concrete and Commentary. Therefore, a specialized concrete mix design for reinforced concrete for protection against chloride exposure is not considered warranted.

Nitrates present in soil can be corrosive to copper tubing at concentrations greater than 50 mg/kg. The tested sample possess nitrate concentrations of 19 and 162 mg/kg. **Based on this test**

result, the on-site soils are considered to be corrosive to copper pipe, and some type of protection will be required.

Since SCG does not practice in the area of corrosion engineering, we recommend that the client contact a corrosion engineer to provide a more thorough evaluation.

Shrinkage/Subsidence

Based on the results of the laboratory testing, removal and recompaction of the near-surface native alluvium will result in an average shrinkage of 4 to 12 percent. **The shrinkage estimate does not include volume loss due to organics/tree removal.**

It should be noted that the potential shrinkage estimate is based on dry density testing performed on small-diameter samples taken at the boring locations. If a more accurate and precise shrinkage estimate is desired, SCG can perform a shrinkage study involving several excavated test-pits where in-place densities are determined using in-situ testing methods instead of laboratory density testing on small-diameter samples. Please contact SCG for details and a cost estimate regarding a shrinkage study, if desired.

Minor ground subsidence is expected to occur in the soils below the zone of removal, due to settlement and machinery working. The subsidence is estimated to be 0.1 feet. This estimate may be used for grading in areas that are underlain by native alluvial soils.

These estimates are based on previous experience and the subsurface conditions encountered at the boring locations. The actual amount of subsidence is expected to be variable and will be dependent on the type of machinery used, repetitions of use, and dynamic effects, all of which are difficult to assess precisely.

Grading and Foundation Plan Review

It is recommended that we be provided with copies of the finalized grading and foundation plans, when they become available, for review with regard to the conclusions, recommendations, and assumptions contained within this report.

6.3 Site Grading Recommendations

The grading recommendations presented below are based on the subsurface conditions encountered at the boring locations and our understanding of the proposed development. We recommend that all grading activities be completed in accordance with the Grading Guide Specifications included as Appendix D of this report, unless superseded by site-specific recommendations presented below.

Site Stripping

Initial site preparation should include stripping of any surficial vegetation and organic soils. Based on conditions encountered at the time of the subsurface exploration, stripping of native grass and weed growth as well as numerous fruit trees is expected to be necessary throughout the majority of the site. Any organic topsoil and all tree root masses should be removed during site stripping.

These materials should be disposed of off-site. The actual extent of site stripping should be determined in the field by the geotechnical engineer, based on the organic content and stability of the materials encountered.

Demolition of the existing structures and pavements should include all foundations, floor slabs, pavements, septic systems, utilities and any other subsurface improvements that will not remain in place with the new development. Debris resultant from demolition should be disposed of off-site. Alternatively, concrete and asphalt debris may be pulverized to a maximum 2-inch particle size, well mixed with the sandy on-site soils, and incorporated into new structural fills or it may be processed to create crushed miscellaneous base (CMB).

Treatment of Existing Soils: Building Pad

Remedial grading should be performed within the proposed building pad area in order to remove all of the existing undocumented fill soils, and a portion of the existing alluvium. The undocumented fill soils extend to depths of 2½ to 4½± feet at the boring locations. The soils within the proposed building pad area should also be overexcavated to a depth of 5 feet below existing grade and to a depth of at least 3 feet below proposed building pad subgrade elevation. The proposed foundation influence zones within the industrial building should be overexcavated to a depth of at least 3 feet below proposed foundation bearing grade.

The overexcavation areas should extend at least 5 feet beyond the building and foundation perimeters, and to an extent equal to the depth of fill below the new foundations. If the proposed structure incorporates any exterior columns (such as for a canopy or overhang) the area of overexcavation should also encompass these areas.

Following completion of the overexcavation, the subgrade soils within the overexcavation areas should be evaluated by the geotechnical engineer to verify their suitability to serve as the structural fill subgrade, as well as to support the foundation loads of the new structure. This evaluation should include proofrolling and probing to identify any soft, loose, or otherwise unstable soils that must be removed. The possible fill soils encountered at Boring Nos. B-5 and B-6 should be evaluated at the time of grading. If these soils are determined to represent undocumented fill, they should also be overexcavated. **Some localized areas of deeper excavation may be required if loose, porous, or low-density native soils are encountered at the base of the overexcavation.**

After a suitable overexcavation subgrade has been achieved, the exposed soils should be scarified to a depth of at least 12 inches, and moisture conditioned to at 2 to 4 percent above optimum moisture content, and recompacted to at least 90 percent of the ASTM D-1557 maximum dry density. The previously excavated soils may then be replaced as compacted structural fill.

Treatment of Existing Soils: Retaining Walls and Site Walls

The existing soils within the areas of proposed retaining and non-retaining site walls should be overexcavated to a depth of at least 3 feet below foundation bearing grade and replaced as compacted structural fill. Any existing fill soils in these areas should be removed. Subgrades for erection pads for concrete tilt-up walls are considered to be a part of the foundation system and should also be overexcavated. Additional overexcavation may be required if porous or collapsible alluvium is encountered, as discussed above. The overexcavation subgrade soils should be

evaluated by the geotechnical engineer prior to scarifying, moisture conditioning and recompacting the upper 12 inches of exposed subgrade soils. The previously excavated soils may then be replaced as compacted structural fill.

If the full lateral extent of overexcavation is not achievable for the proposed walls, the foundations should be redesigned using a lower bearing pressure. The geotechnical engineer of record should be contacted for recommendations pertaining to this type of condition.

Treatment of Existing Soils: Parking and Drive Areas

Based on economic considerations, overexcavation of the undocumented fill soils and near-surface alluvial soils in the new parking and drive areas is not considered warranted, with the exception of areas where lower strength, or unstable soils are identified by the geotechnical engineer during grading.

Subgrade preparation in the new parking and drive areas should initially consist of removal of all soils disturbed during stripping. The geotechnical engineer should then evaluate the subgrade to identify any areas of additional unsuitable soils. The subgrade soils should then be scarified to a depth of $12\pm$ inches, moisture conditioned to 2 to 4 percent above optimum, and recompacted to at least 90 percent of the ASTM D-1557 maximum dry density. Based on the presence of variable strength alluvial soils throughout the site, it is expected that some isolated areas of additional overexcavation may be required to remove zones of lower strength, unsuitable soils.

The grading recommendations presented above for the proposed parking and drive areas assume that the owner and/or developer can tolerate minor amounts of settlement within the proposed parking areas. The grading recommendations presented above do not completely mitigate the extent of low strength collapsible alluvium in the parking areas. As such, settlement and associated pavement distress could occur. Typically, repair of such distressed areas involves significantly lower costs than completely mitigating these soils at the time of construction. If the owner cannot tolerate the risk of such settlements, the parking and drive areas should be overexcavated to a depth of 2 feet below proposed pavement subgrade elevation, with the resulting soils replaced as compacted structural fill.

Treatment of Existing Soils: Flatwork Areas

Subgrade preparation in the new flatwork areas should initially consist of removal of all soils disturbed during stripping and possible demolition operations. The geotechnical engineer should then evaluate the subgrade to identify any areas of additional unsuitable soils. The subgrade soils should then be scarified to a depth of $12\pm$ inches, moisture conditioned or air dried to 2 to 4 percent above optimum, and recompacted to at least 90 percent of the ASTM D-1557 maximum dry density. Based on the presence of variable strength alluvial soils throughout the subject site, it is expected that some isolated areas of additional overexcavation may be required to remove zones of lower strength, unsuitable soils.

As noted previously, the subject site is underlain by low expansive soils. Support of new flatwork on low expansive soils carries minor additional risk with respect to flatwork movement and potential distress. This report provides recommendations for moisture conditioning and additional steel reinforcement in the flatwork areas in order to minimize the potential effects of the

expansive soils. However, if additional protection is desired, the client should consider the placement of a 1 to 2-foot thick layer of non-expansive soil beneath all flatwork.

Fill Placement

- Fill soils should be placed in thin ($6\pm$ inches), near-horizontal lifts, moisture conditioned to 2 to 4 percent above the optimum moisture content, and compacted.
- On-site soils may be used for fill provided they are cleaned of any debris to the satisfaction of the geotechnical engineer.
- All grading and fill placement activities should be completed in accordance with the requirements of the 2019 CBC and the grading code of the city of Beaumont and/or the county of Riverside.
- All fill soils should be compacted to at least 90 percent of the ASTM D-1557 maximum dry density. Fill soils should be well mixed.
- Compaction tests should be performed periodically by the geotechnical engineer as random verification of compaction and moisture content. These tests are intended to aid the contractor. Since the tests are taken at discrete locations and depths, they may not be indicative of the entire fill and therefore should not relieve the contractor of his responsibility to meet the job specifications.

Imported Structural Fill

All imported structural fill should consist of very low expansive ($EI < 20$), well graded soils possessing at least 10 percent fines (that portion of the sample passing the No. 200 sieve). Additional specifications for structural fill are presented in the Grading Guide Specifications, included as Appendix D.

Utility Trench Backfill

In general, all utility trench backfill soils should be compacted to at least 90 percent of the ASTM D-1557 maximum dry density. As an alternative, a clean sand (minimum Sand Equivalent of 30) may be placed within trenches and compacted in place (jetting or flooding is not recommended). Compacted trench backfill should conform to the requirements of the local grading code, and more restrictive requirements may be indicated by the city of Beaumont and/or the county of Riverside. All utility trench backfills should be witnessed by the geotechnical engineer. The trench backfill soils should be compaction tested where possible; probed and visually evaluated elsewhere.

Utility trenches which parallel a footing, and extending below a 1h:1v plane projected from the outside edge of the footing should be backfilled with structural fill soils, compacted to at least 90 percent of the ASTM D-1557 standard. Pea gravel backfill should not be used for these trenches.

6.4 Construction Considerations

Excavation Considerations

The near-surface soils generally consist of silty sands and clayey sands, with some zones of sandy silts. Some of these materials will likely be subject to minor caving within shallow excavations. Where caving occurs within shallow excavations, flattened excavation slopes may be sufficient to provide excavation stability. On a preliminary basis, the inclination of temporary slopes should not exceed 2h:1v. Deeper excavations may require some form of external stabilization such as shoring or bracing. Maintaining adequate moisture content within the near-surface soils will improve excavation stability. All excavation activities on this site should be conducted in accordance with Cal-OSHA regulations.

Moisture Sensitive Subgrade Soils

Most of the near surface soils possess appreciable silt and clay content and may become unstable if exposed to significant moisture infiltration or disturbance by construction traffic. In addition, based on their granular content, some of the on-site soils will also be susceptible to erosion. The site should, therefore, be graded to prevent ponding of surface water and to prevent water from running into excavations.

Unstable subgrade soils may be encountered at the base of the overexcavations within the proposed building area. The extent of unstable subgrade soils will, to a large degree, depend on methods used by the contractor to avoid adding additional moisture to these soils or disturbing soils which already possess high moisture contents. If grading occurs during a period of relatively wet weather, an increase in subgrade instability should also be expected. If unstable subgrade conditions are encountered, it is recommended that only tracked vehicles be used for fill placement and compaction.

If the construction schedule dictates that site grading will occur during a period of wet weather, allowances should be made for costs and delays associated with drying the on-site soils or import of a drier, less moisture sensitive fill material. Grading during wet or cool weather may also increase the depth of overexcavation in the pad area as well as the need for a stabilization layer.

Groundwater

The static groundwater table is considered to exist at a depth greater than $50\pm$ feet below existing grade. Therefore, groundwater is not expected to impact the grading or foundation construction activities.

6.5 Foundation Design and Construction

Based on the preceding grading recommendations, it is assumed that the new building pad will be underlain by newly placed structural fill soils extending to depths of at least 3 feet below foundation bearing grade. Based on this subsurface profile, the proposed structure may be supported on shallow foundations.

Foundation Design Parameters

New square and rectangular footings may be designed as follows:

- Maximum, net allowable soil bearing pressure: 3,000 lbs/ft².
- Minimum wall/column footing width: 14 inches/24 inches.
- Minimum longitudinal steel reinforcement within strip footings: Four (4) No. 5 rebars (2 top and 2 bottom), due to the presence of potentially expansive soils.
- Minimum foundation embedment: 12 inches into suitable structural fill soils, and at least 18 inches below adjacent exterior grade. Interior column footings may be placed immediately beneath the floor slab.
- It is recommended that the perimeter building foundations be continuous across all exterior doorways. Any flatwork adjacent to the exterior doors should be doweled into the perimeter foundations in a manner determined by the structural engineer.

The allowable bearing pressures presented above may be increased by 1/3 when considering short duration wind or seismic loads. The minimum steel reinforcement recommended above is based on standard geotechnical practice. Additional rigidity may be necessary for structural considerations. The actual design of the foundations should be determined by the structural engineer.

Foundation Construction

The foundation subgrade soils should be evaluated at the time of overexcavation, as discussed in Section 6.3 of this report. It is further recommended that the foundation subgrade soils be evaluated by the geotechnical engineer immediately prior to steel or concrete placement. Soils suitable for direct foundation support should consist of newly placed structural fill compacted at least 90 percent of the ASTM D-1557 maximum dry density. Any unsuitable materials should be removed to a depth of suitable bearing compacted structural fill, with the resulting excavations backfilled with compacted fill soils. As an alternative, lean concrete slurry (500 to 1,500 psi) may be used to backfill such isolated overexcavations.

The foundation subgrade soils should also be properly moisture conditioned to 2 to 4 percent above the Modified Proctor optimum, to a depth of at least 12 inches below bearing grade. Since it is typically not feasible to increase the moisture content of the floor slab and foundation subgrade soils once rough grading has been completed, care should be taken to maintain the moisture content of the building pad subgrade soils throughout the construction process.

Estimated Foundation Settlements

Post-construction total and differential static settlements of shallow foundations designed and constructed in accordance with the previously presented recommendations are estimated to be less than 1.0 and 0.5 inches, respectively, under static conditions. Differential movements are expected to occur over a 50-foot span, thereby resulting in an angular distortion of less than 0.002 inches per inch.

Lateral Load Resistance

Lateral load resistance will be developed by a combination of friction acting at the base of foundations and slabs and the passive earth pressure developed by footings below grade. The following friction and passive pressure may be used to resist lateral forces:

- Passive Earth Pressure: 300 lbs/ft³
- Friction Coefficient: 0.30

These are allowable values, and include a factor of safety. When combining friction and passive resistance, the passive pressure component should be reduced by one-third. These values assume that footings will be poured directly against compacted structural fill soils. The maximum allowable passive pressure is 2,500 lbs/ft².

6.6 Floor Slab Design and Construction

Subgrades which will support new floor slabs should be prepared in accordance with the recommendations contained in the **Site Grading Recommendations** section of this report. Based on the anticipated grading which will occur at this site, the floor of the proposed structure may be constructed as a conventional slab-on-grade, supported on newly placed structural fill, extending to a depth of at least 3 feet below finished pad grade. Based on geotechnical considerations, the floor slab may be designed as follows:

- Minimum slab thickness: 6 inches.
- Modulus of Subgrade Reaction: 150 psi/in.
- Minimum slab reinforcement: Not required for geotechnical considerations. The actual floor slab reinforcement should be determined by the structural engineer, based upon the imposed loading.
- Slab underlayment: If moisture sensitive floor coverings will be used then minimum slab underlayment should consist of a moisture vapor barrier constructed below the entire slab area where such moisture sensitive floor coverings are expected. The moisture vapor barrier should meet or exceed the Class A rating as defined by ASTM E 1745-97 and have a permeance rating less than 0.01 perms as described in ASTM E 96-95 and ASTM E 154-88. A polyolefin material such as Stego® Wrap Vapor Barrier or equivalent will meet these specifications. The moisture vapor barrier should be properly constructed in accordance with all applicable manufacturer specifications. Given that a rock free subgrade is anticipated and that a capillary break is not required, sand below the barrier is not required. The need for sand and/or the amount of sand above the moisture vapor barrier should be specified by the structural engineer or concrete contractor. The selection of sand above the barrier is not a geotechnical engineering issue and hence outside our purview. Where moisture sensitive floor coverings are not anticipated, the vapor barrier may be eliminated.
- Moisture condition the floor slab subgrade soils to 2 to 4 percent above the Modified Proctor optimum moisture content, to a depth of 12 inches. The moisture content of the

floor slab subgrade soils should be verified by the geotechnical engineer within 24 hours prior to concrete placement.

- Proper concrete curing techniques should be utilized to reduce the potential for slab curling or the formation of excessive shrinkage cracks.

The actual design of the floor slab should be completed by the structural engineer to verify adequate thickness and reinforcement.

6.7 Exterior Flatwork Design and Construction

Subgrades which will support new exterior slabs-on-grade for sidewalks, patios, and other concrete flatwork, should be prepared in accordance with the recommendations contained in the ***Grading Recommendations*** section of this report. Based on geotechnical considerations, exterior slabs on grade may be designed as follows:

- Minimum slab thickness: 4½ inches.
- Minimum slab reinforcement: No. 3 bars at 18 inches on center, in both directions.
- The flatwork at building entry areas should be structurally connected to the perimeter foundation that is recommended to span across the door opening. This recommendation is designed to reduce the potential for differential movement at this joint.
- Moisture condition the flatwork subgrade soils to at least 2 to 4 percent of optimum moisture content, to a depth of at least 12 inches. Adequate moisture conditioning should be verified by the geotechnical engineer 24 hours prior to concrete placement.
- Proper concrete curing techniques should be utilized to reduce the potential for slab curling or the formation of excessive shrinkage cracks.
- Control joints should be provided at a maximum spacing of 8 feet on center in two directions for slabs and at 6 feet on center for sidewalks. Control joints are intended to direct cracking. Minor cracking of exterior concrete slabs on grade should be expected.

Expansion or felt joints should be used at the interface of exterior slabs on grade and any fixed structures to permit relative movement.

6.8 Retaining Wall Design and Construction

Although not indicated on the site plan, some small (less than 6 feet in height) retaining walls may be required in truck court area and to facilitate the new site grades. The parameters recommended for use in the design of these walls are presented below.

Retaining Wall Design Parameters

Based on the soil conditions encountered at the boring locations, the following parameters may be used in the design of new retaining walls for this site. We have provided parameters assuming the use of on-site soils for retaining wall backfill. The on-site soils generally consist of silty sands, sandy silts, and clayey sands. Some zones of sandy clays were also encountered near the ground surface. **The sandy clays are not recommended to be used as retaining wall backfill.** Based on their classifications, the on-site silty sands, sandy silts and clayey sands are expected to possess a friction angle of at least 30 degrees when compacted to 90 percent of the ASTM-1557 maximum dry density.

If desired, SCG could provide design parameters for an alternative select backfill material behind the retaining walls. The use of select backfill material could result in lower lateral earth pressures. In order to use the design parameters for the imported select fill, this material must be placed within the entire active failure wedge. This wedge is defined as extending from the heel of the retaining wall upwards at an angle of approximately 60° from horizontal. If select backfill material behind the retaining wall is desired, SCG should be contacted for supplementary recommendations.

RETAINING WALL DESIGN PARAMETERS

Design Parameter	Soil Type	
	On-Site Silty Sands, Sandy Silts, Silty Clays	
Internal Friction Angle (ϕ)	30°	
Unit Weight	128 lbs/ft ³	
Equivalent Fluid Pressure:	Active Condition (level backfill)	43 lbs/ft ³
	Active Condition (2h:1v backfill)	69 lbs/ft ³
	At-Rest Condition (level backfill)	64 lbs/ft ³

Regardless of the backfill type, the walls should be designed using a soil-footing coefficient of friction of 0.30 and an equivalent passive pressure of 300 lbs/ft³. The structural engineer should incorporate appropriate factors of safety in the design of the retaining walls.

The active earth pressure may be used for the design of retaining walls that do not directly support structures or support soils that in turn support structures and which will be allowed to deflect. The at-rest earth pressure should be used for walls that will not be allowed to deflect such as those which will support foundation bearing soils, or which will support foundation loads directly.

Where the soils on the toe side of the retaining wall are not covered by a "hard" surface such as a structure or pavement, the upper 1 foot of soil should be neglected when calculating passive resistance due to the potential for the material to become disturbed or degraded during the life of the structure.

Seismic Lateral Earth Pressures

In accordance with the 2019 CBC, any retaining walls more than 6 feet in height must be designed for seismic lateral earth pressures. If walls 6 feet or more are required for this site, the geotechnical engineer should be contacted for supplementary seismic lateral earth pressure recommendations.

Retaining Wall Foundation Design

The retaining wall foundations should be supported within newly placed compacted structural fill, extending to a depth of at least 3 feet below proposed foundation bearing grade. Foundations to support new retaining walls should be designed in accordance with the general Foundation Design Parameters presented in a previous section of this report.

Backfill Material

On-site soils may be used to backfill the retaining walls. However, all backfill material placed within 3 feet of the back-wall face should have a particle size no greater than 3 inches. **The on-site sandy clays are not recommended to be used as retaining wall backfill.** The retaining wall backfill materials should be well-graded.

It is recommended that a properly installed prefabricated drainage composite such as the MiraDRAIN 6000XL (or approved equivalent), which is specifically designed for use behind retaining walls be used. If the drainage composite material is not covered by an impermeable surface, such as a structure or pavement, a 12-inch thick layer of a low permeability soil should be placed over the backfill to reduce surface water migration to the underlying soils. The drainage composite should be separated from the backfill soils by a suitable geotextile, approved by the geotechnical engineer.

All retaining wall backfill should be placed and compacted under engineering-controlled conditions in the necessary layer thicknesses to ensure an in-place density between 90 and 93 percent of the maximum dry density as determined by the Modified Proctor test (ASTM D1557). Care should be taken to avoid over-compaction of the soils behind the retaining walls, and the use of heavy compaction equipment should be avoided.

Subsurface Drainage

As previously indicated, the retaining wall design parameters are based upon drained backfill conditions. Consequently, some form of permanent drainage system will be necessary in conjunction with the appropriate backfill material. Subsurface drainage may consist of either:

- A weep hole drainage system typically consisting of a series of 2-inch diameter holes in the wall situated slightly above the ground surface elevation on the exposed side of the wall and at an approximate 10-foot on-center spacing. Alternatively, 4-inch diameter holes at an approximate 20-foot on-center spacing can be used for this type of drainage system. In addition, the weep holes should include a 2 cubic foot pocket of open graded gravel, surrounded by an approved geotextile fabric, at each weep hole location.

- A 4-inch diameter perforated pipe surrounded by 2 cubic feet of gravel per linear foot of drain placed behind the wall, above the retaining wall footing. The gravel layer should be wrapped in a suitable geotextile fabric to reduce the potential for migration of fines. The footing drain should be extended to daylight or tied into a storm drainage system. The actual design of this type of system should be determined by the civil engineer to verify that the drainage system possesses the adequate capacity and slope for its intended use.

Weep holes or a footing drain will not be required for building stem walls.

6.9 Pavement Design Parameters

Site preparation in the pavement area should be completed as previously recommended in the ***Site Grading Recommendations*** section of this report. The subsequent pavement recommendations assume proper drainage and construction monitoring, and are based on either PCA or CALTRANS design parameters for a twenty (20) year design period. However, these designs also assume a routine pavement maintenance program to obtain the anticipated 20-year pavement service life.

Pavement Subgrades

It is anticipated that the new pavements will be primarily supported on a layer of compacted structural fill, consisting of scarified, thoroughly moisture conditioned and recompacted existing soils. The on-site soils generally consist of silty sands, sandy silts, clayey sands, and sandy clays. These soils are generally considered to possess fair pavement support characteristics with estimated R-values ranging from 30 to 40. The subsequent pavement design is therefore based upon an assumed R-value of 30. Any fill material imported to the site should have support characteristics equal to or greater than that of the on-site soils and be placed and compacted under engineering controlled conditions. It is recommended that R-value testing be performed after completion of rough grading. Depending upon the results of the R-value testing, it may be feasible to use thinner pavement sections in some areas of the site.

Asphaltic Concrete

Presented below are the recommended thicknesses for new flexible pavement structures consisting of asphaltic concrete over a granular base. The pavement designs are based on the traffic indices (TI's) indicated. The client and/or civil engineer should verify that these TI's are representative of the anticipated traffic volumes. If the client and/or civil engineer determine that the expected traffic volume will exceed the applicable traffic index, we should be contacted for supplementary recommendations. The design traffic indices equate to the following approximate daily traffic volumes over a 20 year design life, assuming six operational traffic days per week.

Traffic Index	No. of Heavy Trucks per Day
4.0	0
5.0	1
6.0	3
7.0	11
8.0	35
9.0	93

For the purpose of the traffic volumes indicated above, a truck is defined as a 5-axle tractor trailer unit with one 8-kip axle and two 32-kip tandem axles. All of the traffic indices allow for 1,000 automobiles per day.

ASPHALT PAVEMENTS (R=30)						
Materials	Thickness (inches)					
	Auto Parking and Auto Drive Lanes (TI = 4.0 to 5.0)	Truck Traffic				
		TI = 6.0	TI = 7.0	TI = 8.0	TI = 9.0	
Asphalt Concrete	3	3½	4	5	5½	
Aggregate Base	6	8	10	11	13	
Compacted Subgrade	12	12	12	12	12	

The aggregate base course should be compacted to at least 95 percent of the ASTM D-1557 maximum dry density. The asphaltic concrete should be compacted to at least 95 percent of the Marshall maximum density, as determined by ASTM D-2726. The aggregate base course may consist of crushed aggregate base (CAB) or crushed miscellaneous base (CMB), which is a recycled gravel, asphalt and concrete material. The gradation, R-Value, Sand Equivalent, and Percentage Wear of the CAB or CMB should comply with appropriate specifications contained in the current edition of the "Greenbook" Standard Specifications for Public Works Construction.

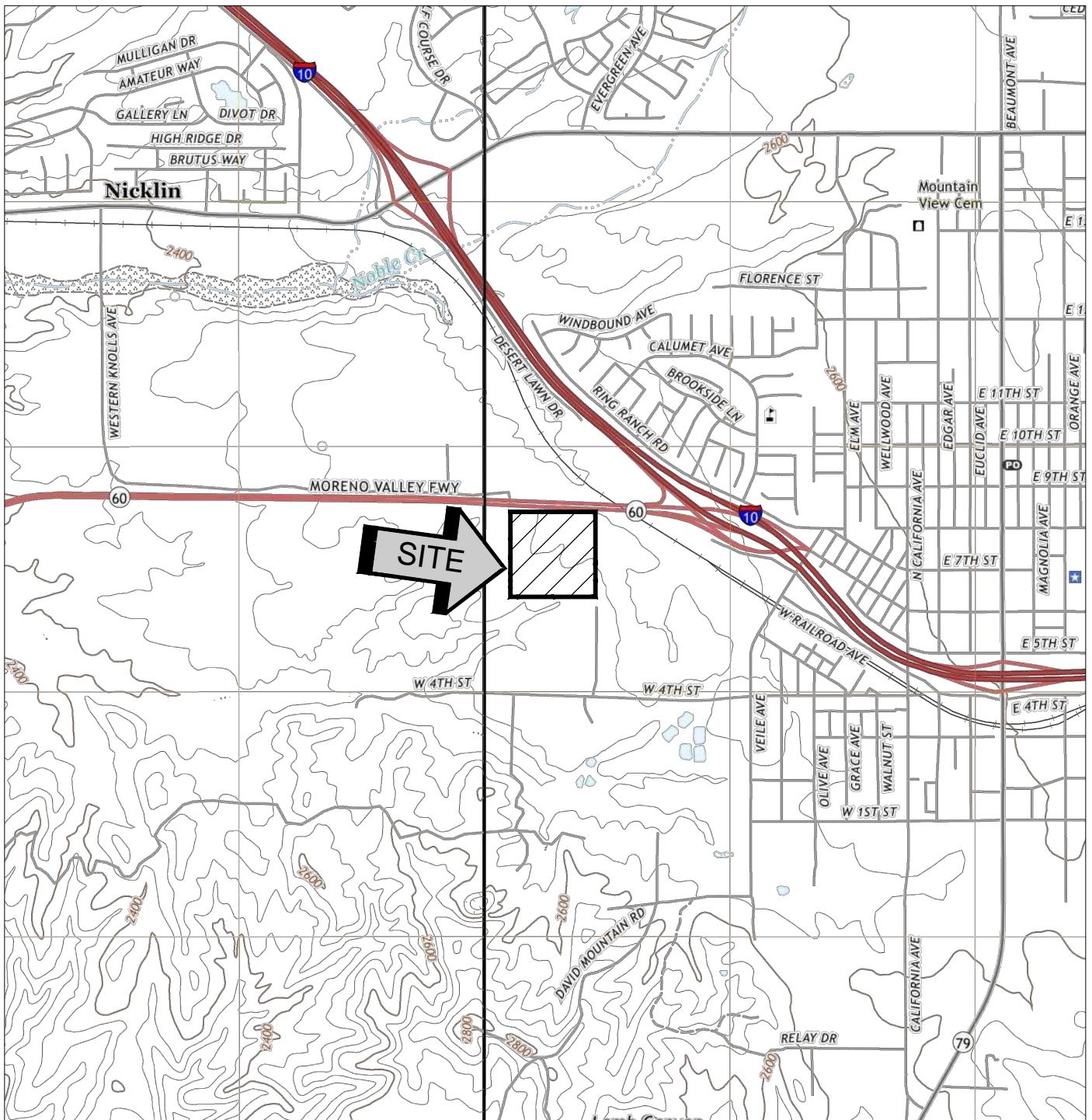
Portland Cement Concrete

The preparation of the subgrade soils within concrete pavement areas should be performed as previously described for proposed asphalt pavement areas. The minimum recommended thicknesses for the Portland Cement Concrete pavement sections are as follows:

PORTLAND CEMENT CONCRETE PAVEMENTS (R=30)					
Materials	Thickness (inches)				
	Autos and Light Truck Traffic (TI = 5.0 to 6.0)	Truck Traffic			
		TI = 7.0	TI = 8.0	TI = 9.0	
PCC	5	5½	6½	8	
Compacted Subgrade (95% minimum compaction)	12	12	12	12	

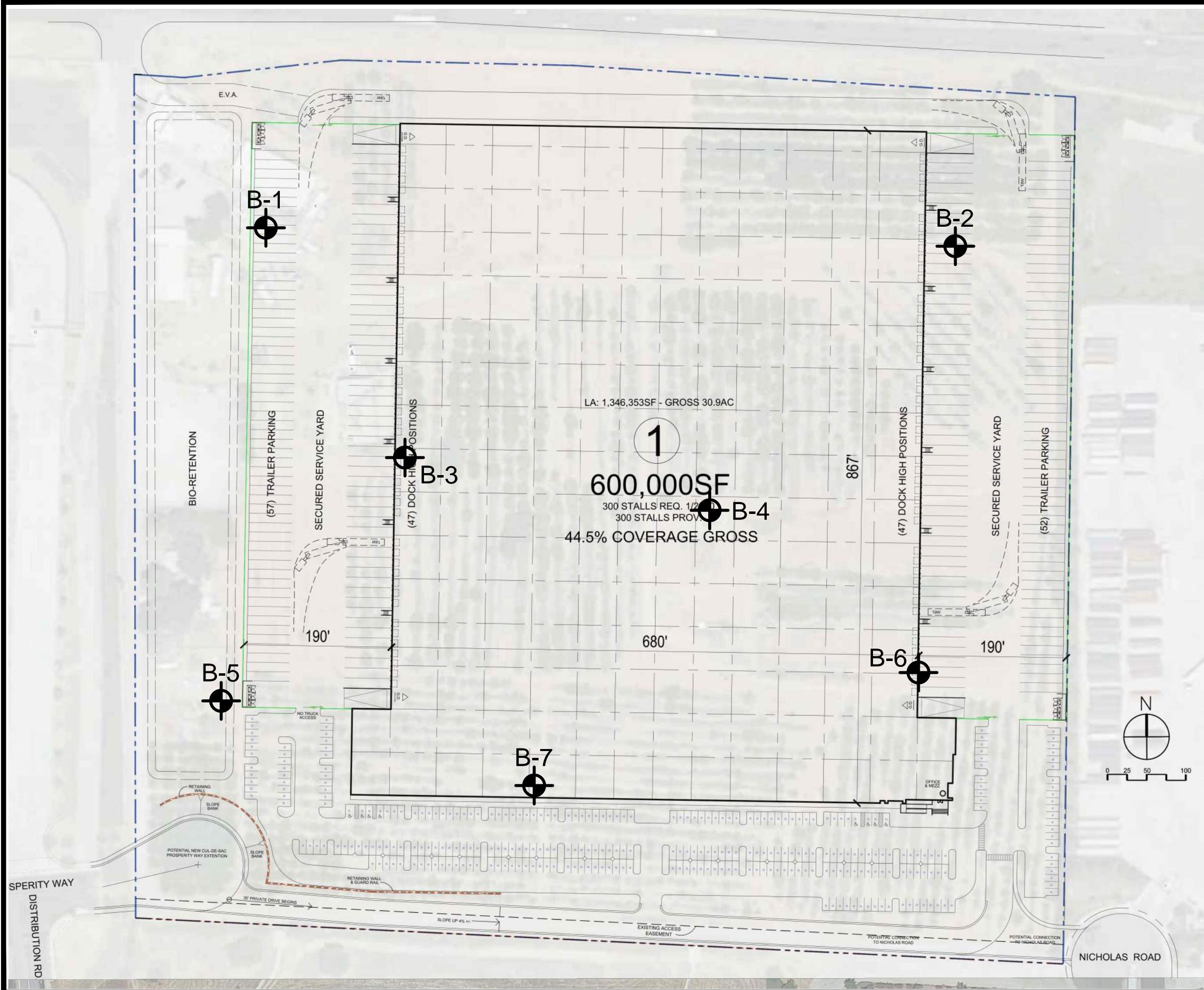
The concrete should have a 28-day compressive strength of at least 3,000 psi. The maximum joint spacing within all of the PCC pavements is recommended to be equal to or less than 30 times the pavement thickness.

7.0 GENERAL COMMENTS


This report has been prepared as an instrument of service for use by the client, in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, civil engineer, and/or structural engineer. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur. The client(s)' reliance upon this report is subject to the Engineering Services Agreement, incorporated into our proposal for this project.

The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and sample depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted.



The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

APPENDIX A

SOURCE: USGS TOPOGRAPHIC MAP OF THE BEAUMONT AND EL CASCO QUADRANGLES, RIVERSIDE COUNTY, CALIFORNIA, 2018.

GEOTECHNICAL LEGEND

 APPROXIMATE BORING LOCATION

BORING LOCATION PLAN
PROPOSED INDUSTRIAL BUILDING
BEAUMONT, CALIFORNIA

SOUTHERN CALIFORNIA GEOTECHNICAL

APPENDIX B

BORING LOG LEGEND

SAMPLE TYPE	GRAPHICAL SYMBOL	SAMPLE DESCRIPTION
AUGER		SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED)
CORE		ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK.
GRAB		SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED)
CS		CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED)
NSR		NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL.
SPT		STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED)
SH		SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED)
VANE		VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED.

COLUMN DESCRIPTIONS

DEPTH:	Distance in feet below the ground surface.
SAMPLE:	Sample Type as depicted above.
BLOW COUNT:	Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3" indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.
POCKET PEN.:	Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.
GRAPHIC LOG:	Graphic Soil Symbol as depicted on the following page.
DRY DENSITY:	Dry density of an undisturbed or relatively undisturbed sample in lbs/ft ³ .
MOISTURE CONTENT:	Moisture content of a soil sample, expressed as a percentage of the dry weight.
LIQUID LIMIT:	The moisture content above which a soil behaves as a liquid.
PLASTIC LIMIT:	The moisture content above which a soil behaves as a plastic.
PASSING #200 SIEVE:	The percentage of the sample finer than the #200 standard sieve.
UNCONFINED SHEAR:	The shear strength of a cohesive soil sample, as measured in the unconfined state.

SOIL CLASSIFICATION CHART

MAJOR DIVISIONS			SYMBOLS		TYPICAL DESCRIPTIONS
			GRAPH	LETTER	
COARSE GRAINED SOILS MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	GRAVEL AND GRAVELLY SOILS MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	CLEAN GRAVELS (LITTLE OR NO FINES)		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
		GRAVELS WITH FINES (APPRECIABLE AMOUNT OF FINES)		GP	Poorly-graded gravels, gravel - sand mixtures, little or no fines
				GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
				GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
	SAND AND SANDY SOILS MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	CLEAN SANDS (LITTLE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
				SP	Poorly-graded sands, gravelly sand, little or no fines
		SANDS WITH FINES (APPRECIABLE AMOUNT OF FINES)		SM	SILTY SANDS, SAND - SILT MIXTURES
				SC	CLAYEY SANDS, SAND - CLAY MIXTURES
FINE GRAINED SOILS MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS LIQUID LIMIT LESS THAN 50			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
				MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50			CH	INORGANIC CLAYS OF HIGH PLASTICITY
				OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
				PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS
		HIGHLY ORGANIC SOILS			

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

FIELD RESULTS			GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS					COMMENTS			
DEPTH (FEET)	SAMPLE	BLOW COUNT			DRILLING DATE: 10/26/21	DRILLING METHOD: Hollow Stem Auger	LOGGED BY: Jamie Hayward	WATER DEPTH: Dry	CAVE DEPTH: 21 feet				
SURFACE ELEVATION: MSL													
23				1± inch Open Graded Gravel FILL: Red Brown fine Sandy Clay, little Silt, trace medium to coarse Sand, slightly porous, slightly cemented, medium dense to dense-damp ALLUVIUM: Red Brown fine Sandy Clay, little Silt, trace medium Sand, stiff-damp	109	9							
22				Red Brown Silty fine Sand, little medium Sand, little Clay, slightly cemented, medium dense-moist	109	11							
21				Red Brown Silty fine Sand to fine Sandy Silt, little Clay, trace medium Sand, medium dense-moist to very moist	108	14							
20				Red Brown fine Sandy Silt, some Clay, medium dense-moist	104	18							
19				Boring Terminated at 25'	13								
25					16								

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**
A California Corporation

BORING NO.

JOB NO.: 21G254-1
PROJECT: Proposed Industrial Building
LOCATION: Beaumont, California

DRILLING DATE: 10/26/21
DRILLING METHOD: Hollow Stem Auger
LOGGED BY: Jamie Hayward

WATER DEPTH: Dry
CAVE DEPTH: 41 feet
READING TAKEN: At Completion

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION (Continued)	LABORATORY RESULTS				COMMENTS
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRILLING DATE: 10/26/21	DRILLING METHOD: Hollow Stem Auger	WATER DEPTH: Dry	CAVE DEPTH: 41 feet	
40					Brown Silty fine Sand, medium dense-damp to very moist					
41					Brown Silty fine to medium Sand, medium dense-damp					
42					Brown fine to medium Sand, trace Silt, dense-damp					
43					Brown Silty fine Sand, dense-damp to moist					
45								9		
46								6		
47								12		
48										
49										
50					Boring Terminated at 50'					

FIELD RESULTS				DESCRIPTION	LABORATORY RESULTS					COMMENTS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)		DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)			
SURFACE ELEVATION: MSL												
5			47	 								
10			31	 								
15			23	 								
20			16	 								
Boring Terminated at 20'												
EI=39 @ 0-5 feet												

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS				COMMENTS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRILLING DATE: 10/26/21	DRILLING METHOD: Hollow Stem Auger	WATER DEPTH: Dry	CAVE DEPTH: 12 feet			
SURFACE ELEVATION: MSL												
Boring Terminated at 15'												
5					<u>FILL</u> : Red Brown Clayey fine Sand, slightly cemented, medium dense-damp	118	13	7	16			
5					<u>ALLUVIUM</u> : Red Brown fine Sandy Clay, trace medium Sand, slightly cemented, stiff to very stiff-moist	113	15					
10					Red Brown Silty fine Sand, little Clay, slightly cemented, medium dense to dense-damp to moist	106	9					
10					Brown Silty fine Sand, medium dense-damp to moist	93	12					
15					Brown fine Sandy Silt, trace medium Sand, medium dense-moist		15					

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**
A California Corporation

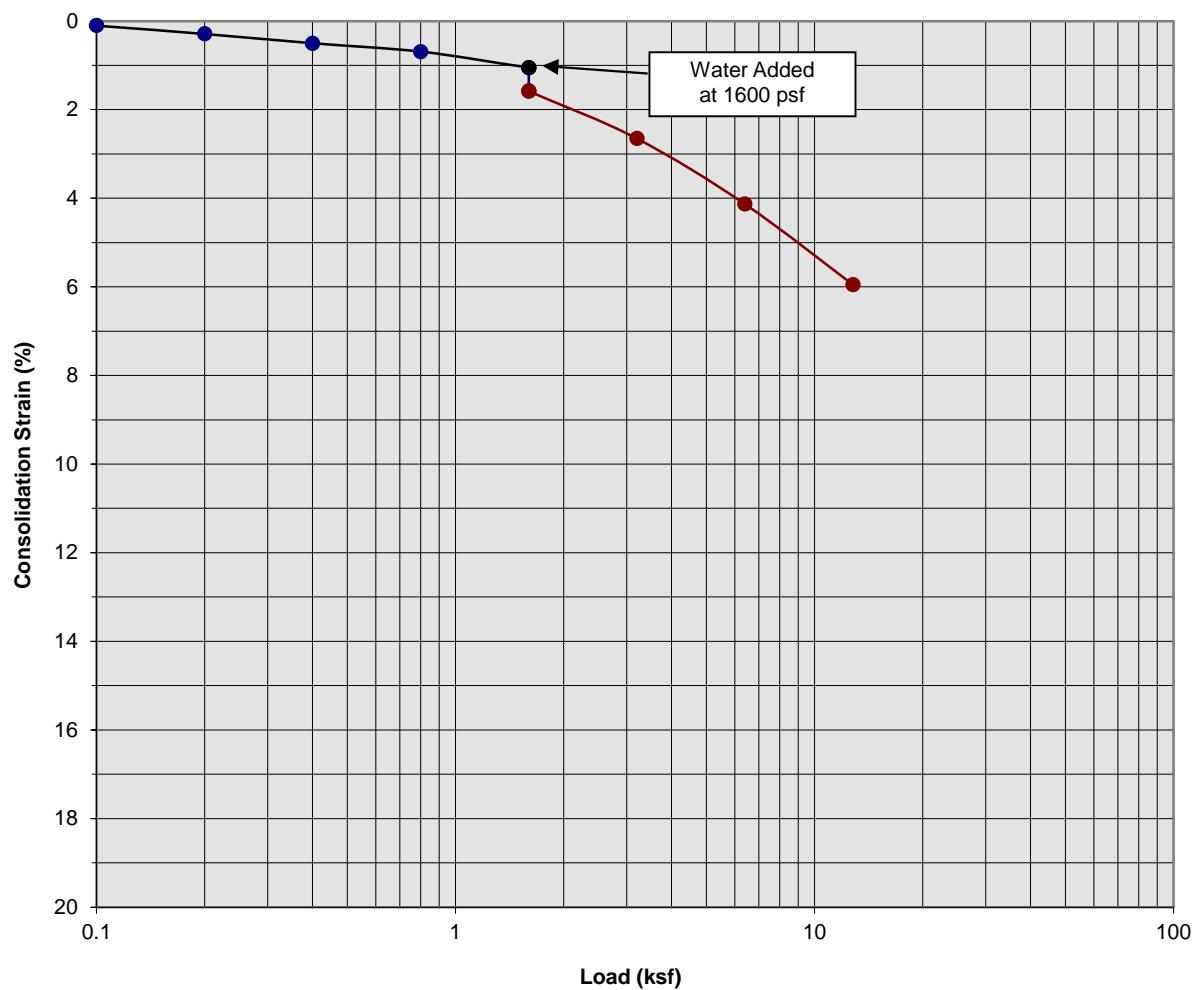
BORING NO. B-5

JOB NO.: 21G254-1
PROJECT: Proposed Industrial Building
LOCATION: Beaumont, California

DRILLING DATE: 10/26/21
DRILLING METHOD: Hollow Stem Auger
LOGGED BY: Jamie Hayward

WATER DEPTH: Dry
CAVE DEPTH: 42 feet
READING TAKEN: At Completion

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION (Continued)	LABORATORY RESULTS				COMMENTS
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRILLING DATE: 10/26/21	DRILLING METHOD: Hollow Stem Auger	WATER DEPTH: Dry	CAVE DEPTH: 42 feet	
20					Gray Brown fine to coarse Sand, dense-dry to damp					
40					Brown Silty fine Sand to fine Sandy Silt, medium dense to dense-moist					
45								15	50	
46					Gray Brown fine to coarse Sand, little Silt, little fine Gravel, dense-damp			12		
50					Boring Terminated at 50'			6		

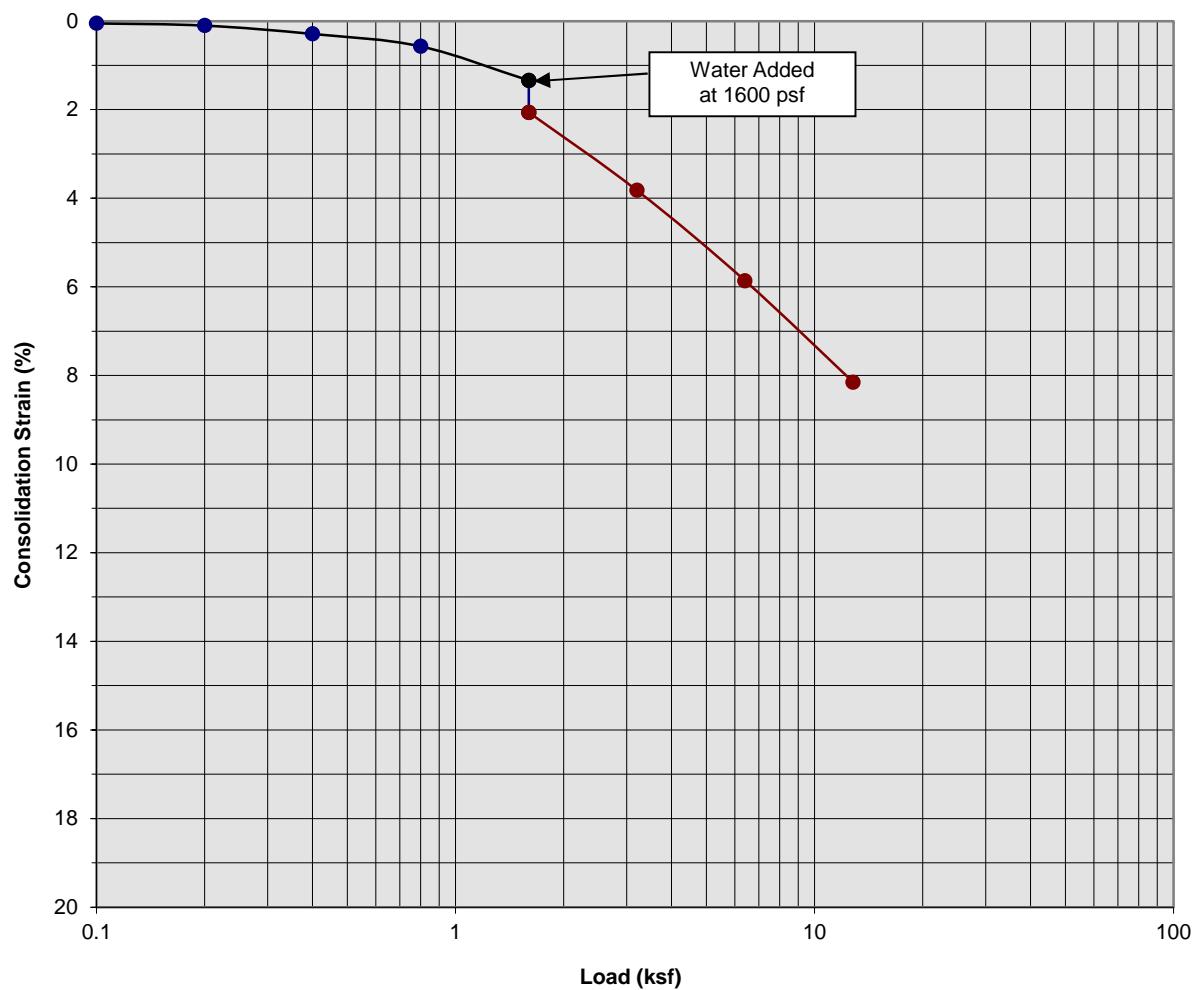

FIELD RESULTS				DESCRIPTION	LABORATORY RESULTS					COMMENTS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)		DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)			
SURFACE ELEVATION: MSL												
@ 13½ feet, trace medium to coarse Sand												
15				<u>FILL</u> : Red Brown fine Sandy Clay, trace medium Sand, slightly porous, slightly cemented, very stiff-dry to damp	6	9						
5				<u>POSSIBLE FILL</u> : Red Brown Silty fine Sand, trace Clay, loose to medium dense-damp	94	8						
31				<u>ALLUVIUM</u> : Red Brown Silty fine Sand to fine Sandy Silt, little Clay, trace Calcareous nodules, slightly cemented, medium dense-damp to moist	110	12						
26					107	13						
27						15						
15						4						
55						12						
20												
22												
25				Boring Terminated at 25'								

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS				COMMENTS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRILLING DATE: 10/26/21	DRILLING METHOD: Hollow Stem Auger	WATER DEPTH: Dry	CAVE DEPTH: 17 feet			
SURFACE ELEVATION: MSL												
ALLUVIUM: Brown fine Sandy Clay, slightly cemented, very stiff-moist												
5								15				
10								18				
15								19				
20								15				
21								16				
12					Brown fine Sandy Silt, trace Clay, medium dense-moist to very moist			21				
18												
18												
Boring Terminated at 20'												
TBL 21G254-1.GPJ SOCALGEO GDT 11/23/21												

APPENDIX C

Consolidation/Collapse Test Results

Classification: Red Brown Silty fine Sand, little medium Sand and Clay

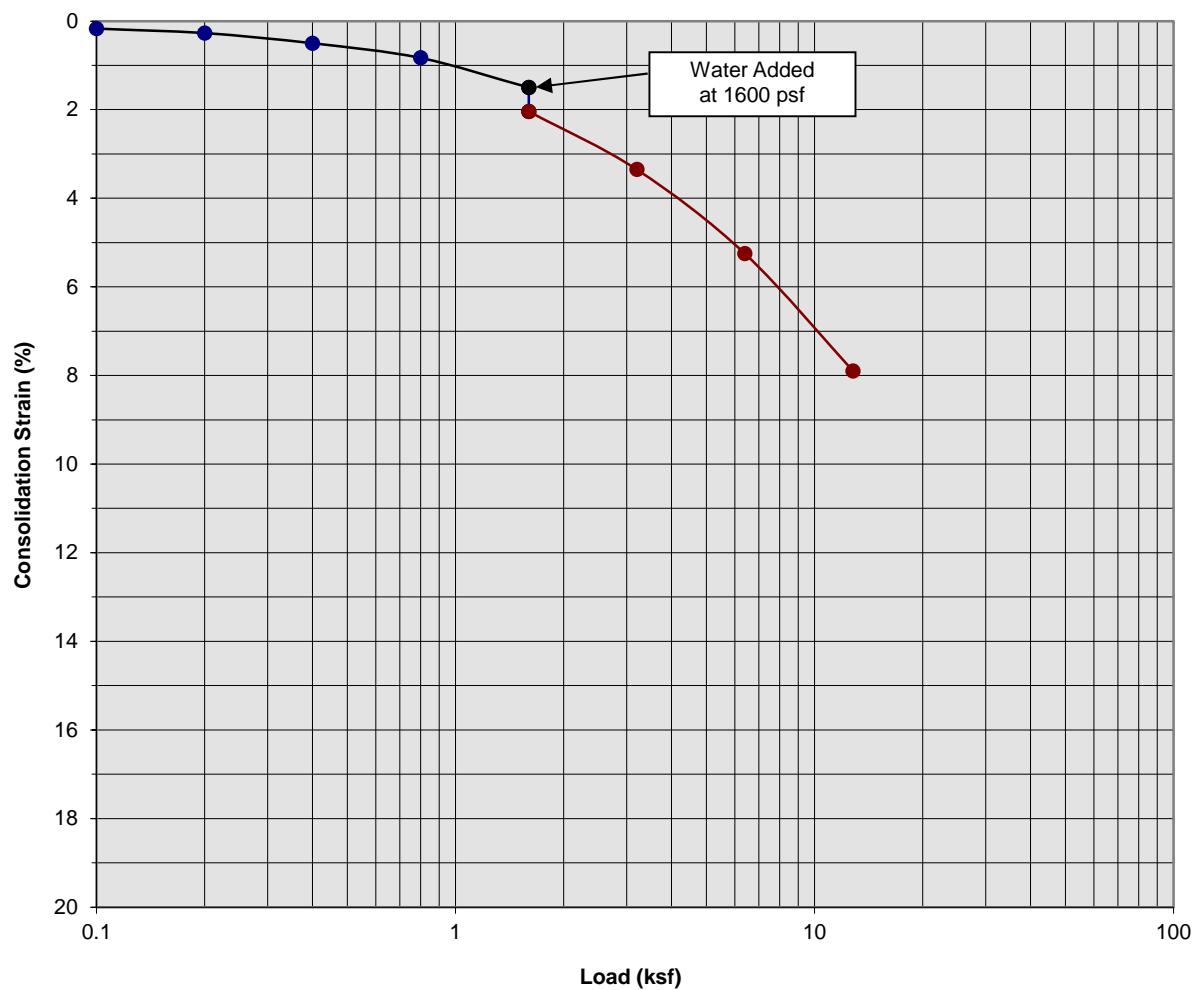

Boring Number:	B-1	Initial Moisture Content (%)	13
Sample Number:	---	Final Moisture Content (%)	16
Depth (ft)	5 to 6	Initial Dry Density (pcf)	110.3
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	117.4
Specimen Thickness (in)	1.0	Percent Collapse (%)	0.53

Proposed Industrial Building
Beaumont, California
Project No. 21G254-1
PLATE C- 1

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**
A California Corporation

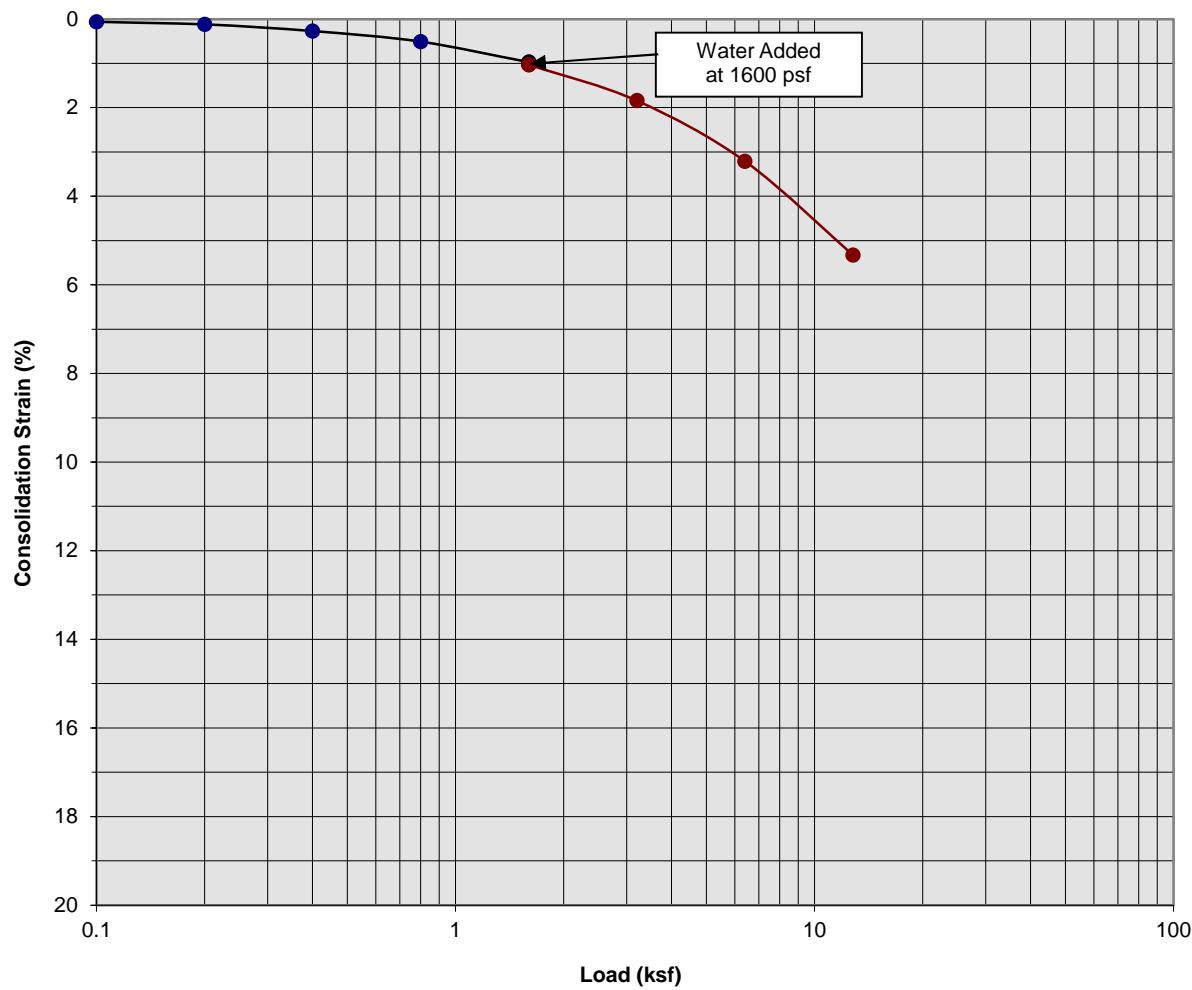
Consolidation/Collapse Test Results

Classification: Red Brown Silty fine Sand, little medium Sand and Clay


Boring Number:	B-1	Initial Moisture Content (%)	11
Sample Number:	---	Final Moisture Content (%)	15
Depth (ft)	7 to 8	Initial Dry Density (pcf)	108.5
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	118.6
Specimen Thickness (in)	1.0	Percent Collapse (%)	0.72

Proposed Industrial Building
Beaumont, California
Project No. 21G254-1
PLATE C- 2

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**
A California Corporation

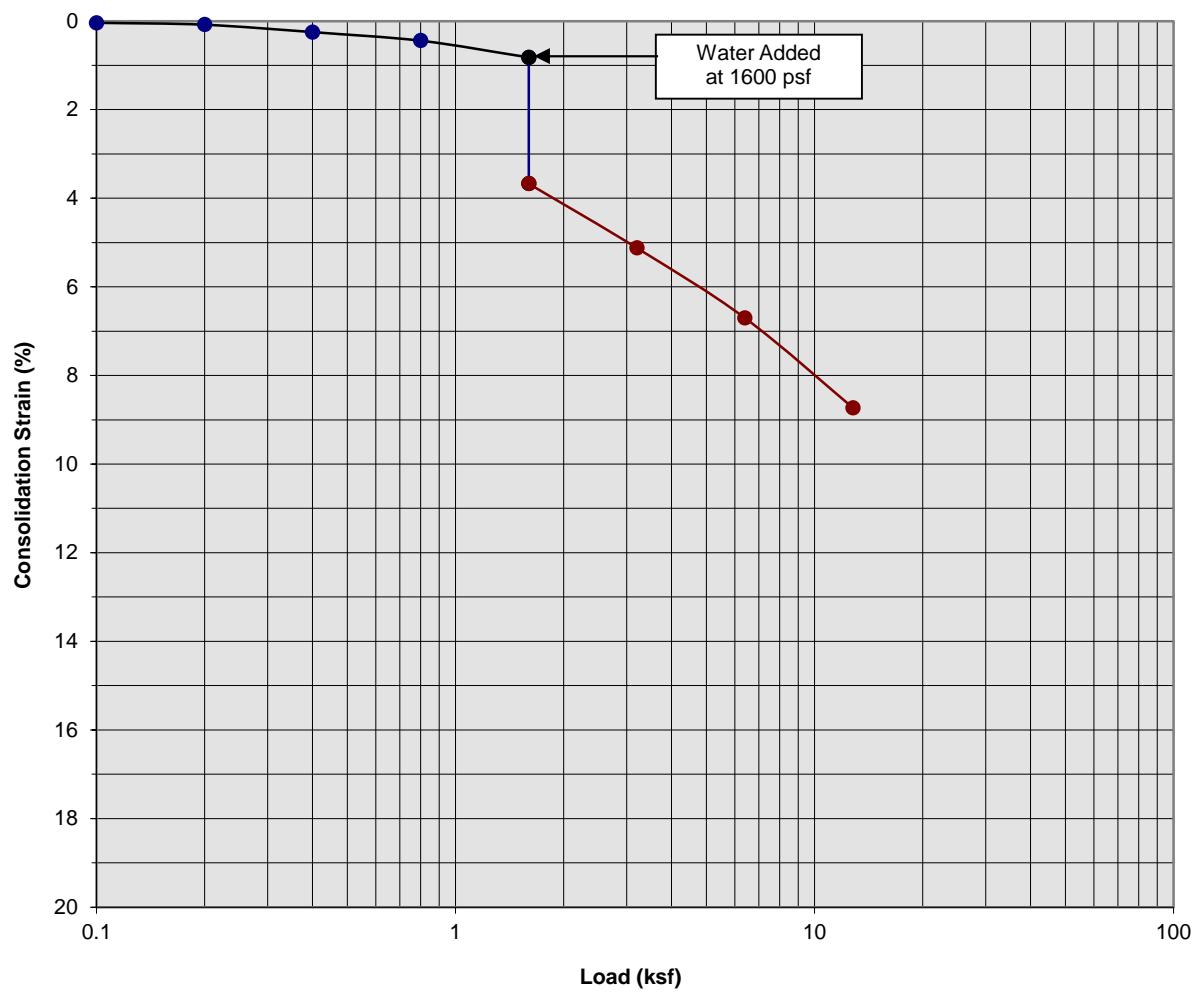

Consolidation/Collapse Test Results

Classification: Red Brown Silty fine Sand to fine Sandy Silt, little Clay

Boring Number:	B-1	Initial Moisture Content (%)	13
Sample Number:	---	Final Moisture Content (%)	20
Depth (ft)	9 to 10	Initial Dry Density (pcf)	107.6
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	116.1
Specimen Thickness (in)	1.0	Percent Collapse (%)	0.54

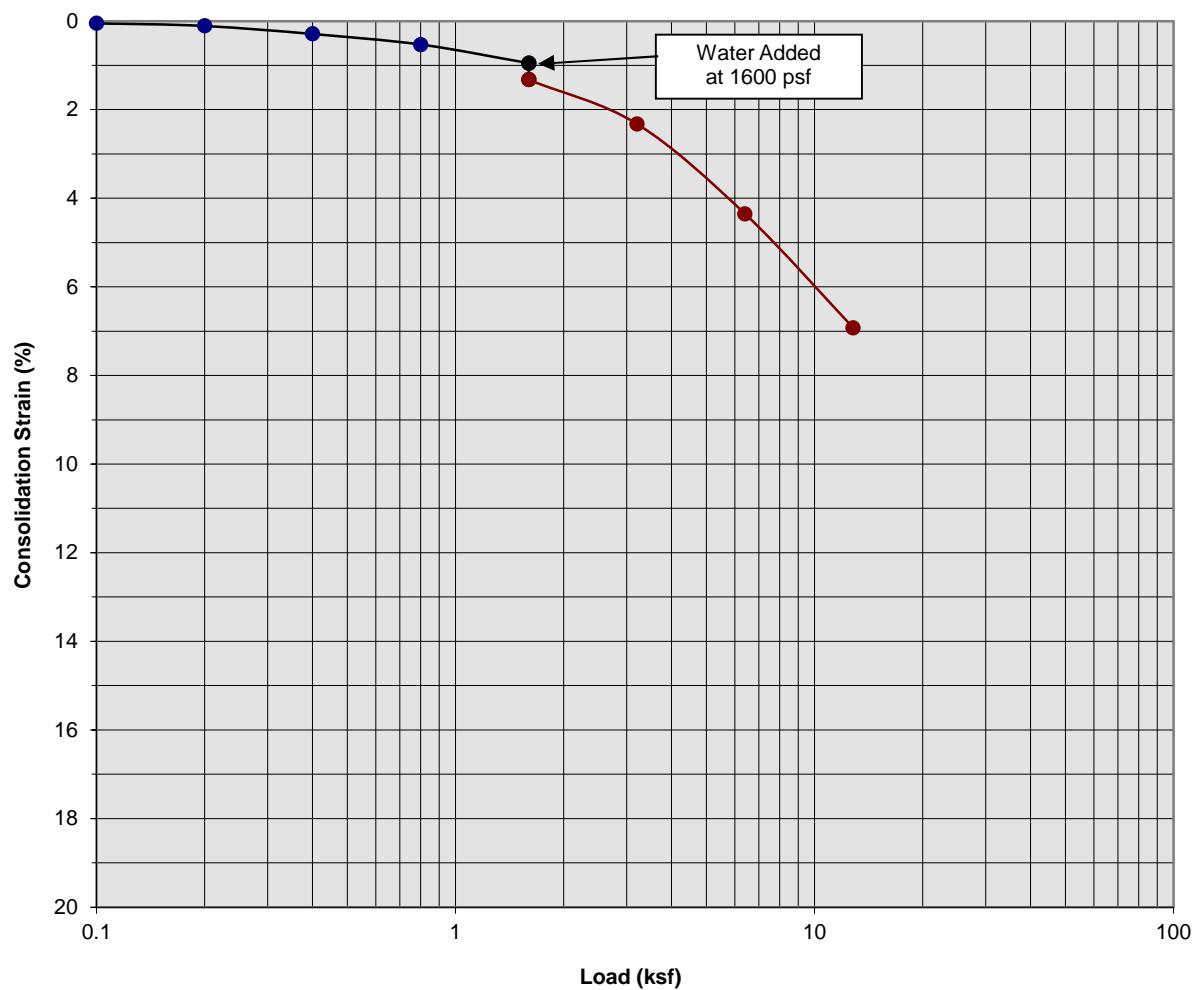
Consolidation/Collapse Test Results

Classification: Red Brown Silty fine Sand to fine Sandy Silt, little Clay


Boring Number:	B-1	Initial Moisture Content (%)	17
Sample Number:	---	Final Moisture Content (%)	21
Depth (ft)	11 to 12	Initial Dry Density (pcf)	102.9
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	108.3
Specimen Thickness (in)	1.0	Percent Collapse (%)	0.06

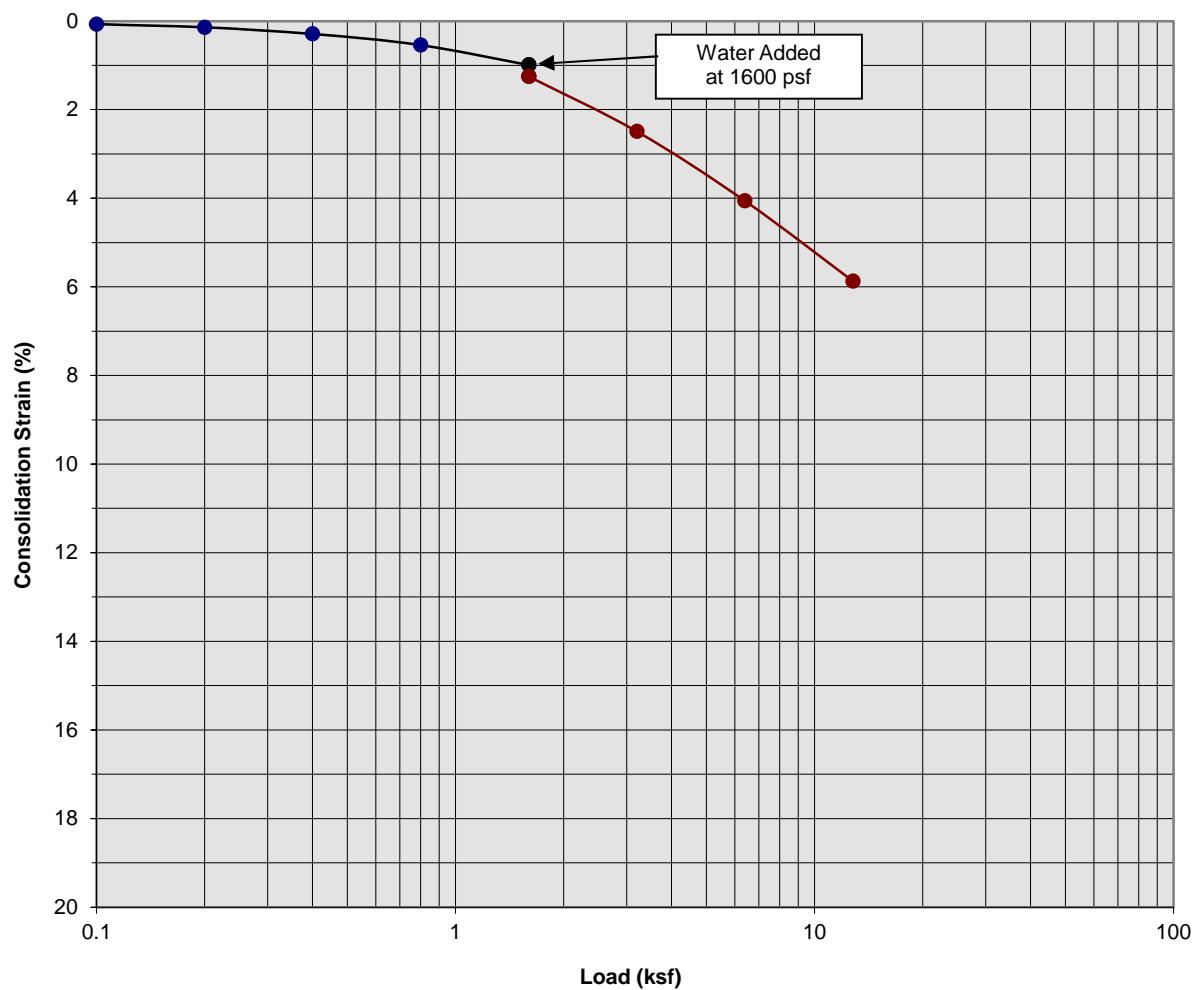
Proposed Industrial Building
Beaumont, California
Project No. 21G254-1
PLATE C- 4

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**
A California Corporation


Consolidation/Collapse Test Results

Classification: Red Brown Clayey fine to medium Sand

Boring Number:	B-3	Initial Moisture Content (%)	11
Sample Number:	---	Final Moisture Content (%)	15
Depth (ft)	5 to 6	Initial Dry Density (pcf)	107.3
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	117.5
Specimen Thickness (in)	1.0	Percent Collapse (%)	2.85

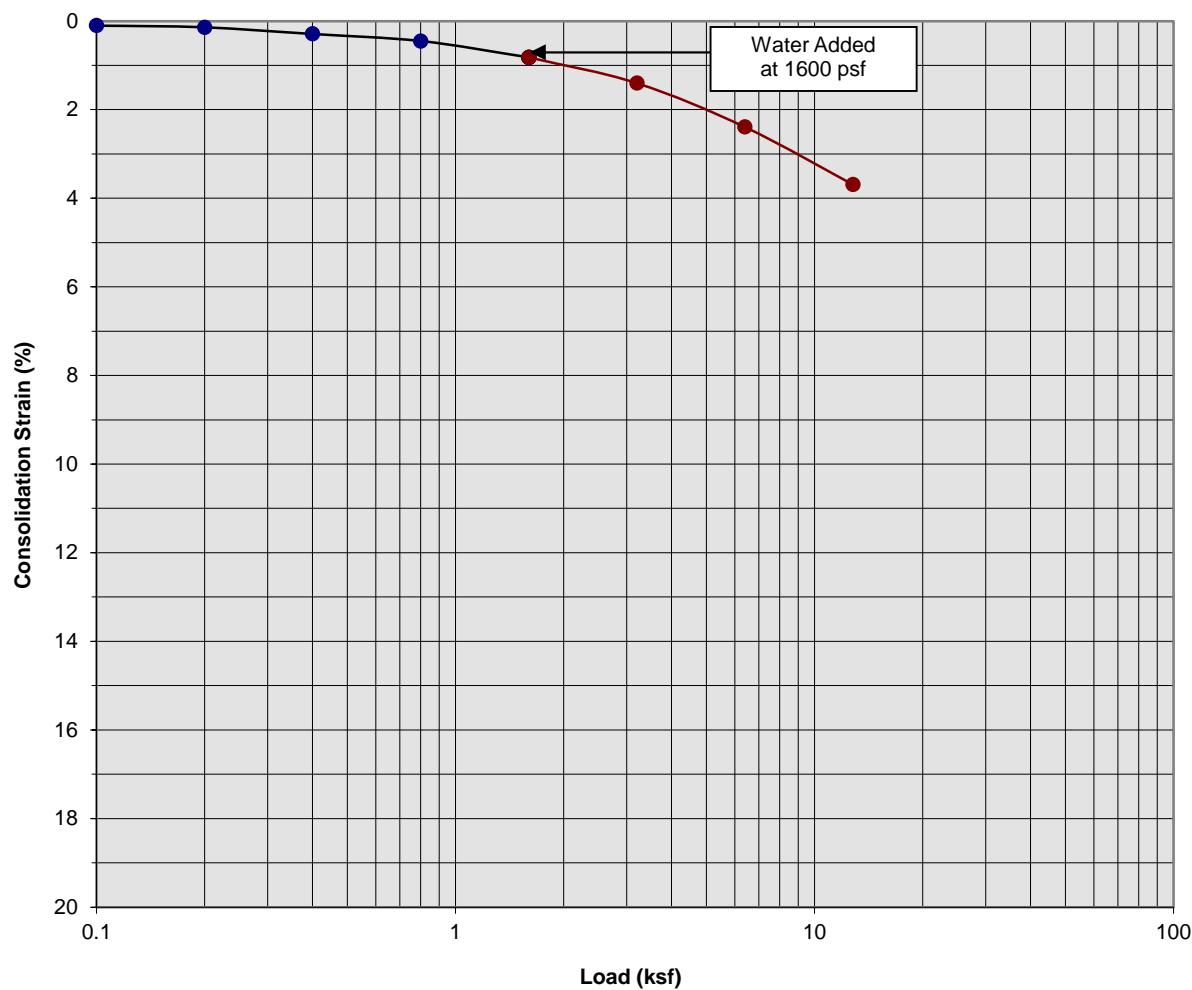

Consolidation/Collapse Test Results

Classification: Red Brown fine Sandy Silt, little Clay

Boring Number:	B-3	Initial Moisture Content (%)	18
Sample Number:	---	Final Moisture Content (%)	20
Depth (ft)	7 to 8	Initial Dry Density (pcf)	105.2
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	113.2
Specimen Thickness (in)	1.0	Percent Collapse (%)	0.37

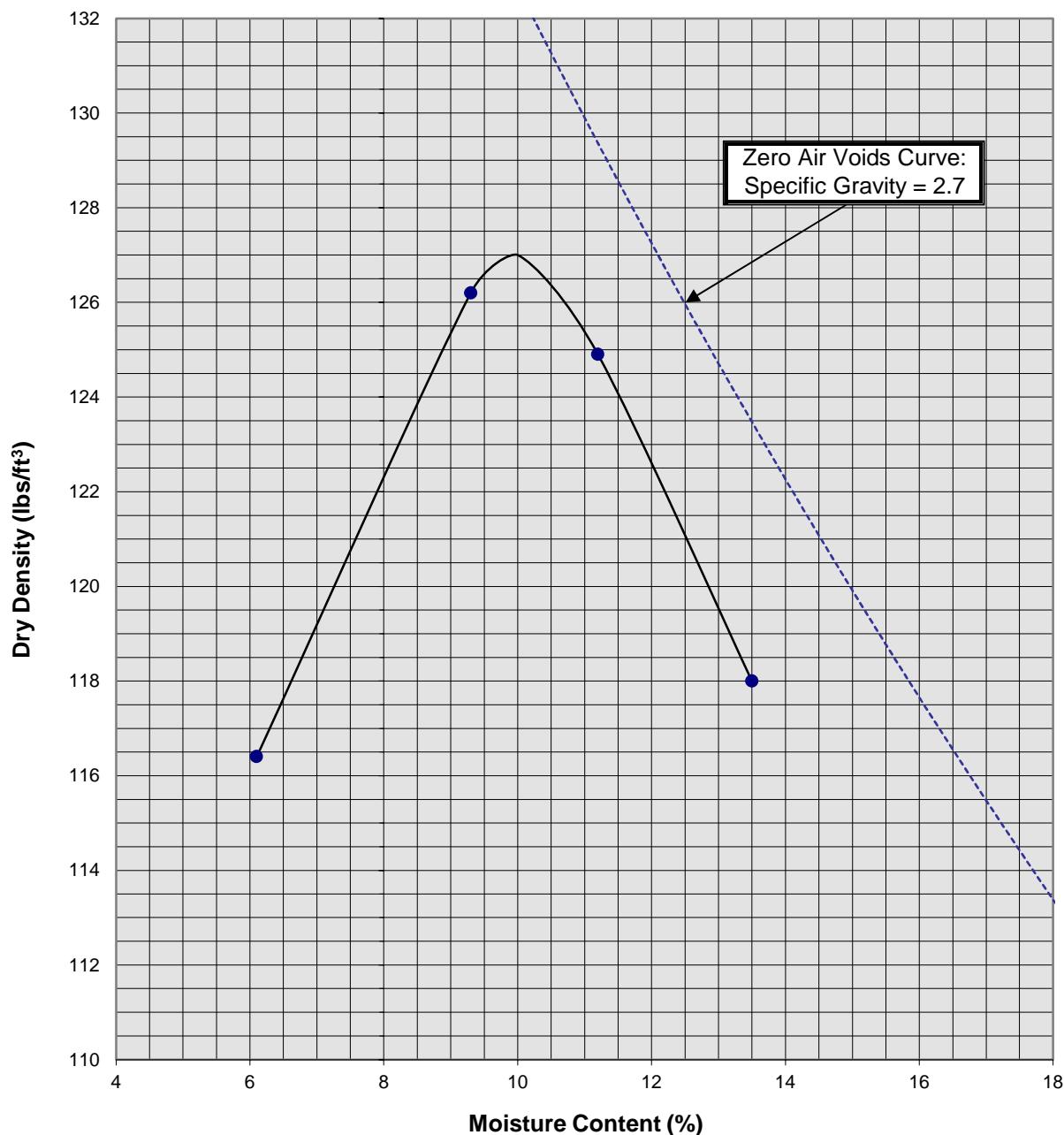
Consolidation/Collapse Test Results

Classification: Red Brown Silty fine Sand, little Clay


Boring Number:	B-3	Initial Moisture Content (%)	5
Sample Number:	---	Final Moisture Content (%)	14
Depth (ft)	9 to 10	Initial Dry Density (pcf)	115.0
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	121.5
Specimen Thickness (in)	1.0	Percent Collapse (%)	0.26

Proposed Industrial Building
Beaumont, California
Project No. 21G254-1
PLATE C- 7

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**
A California Corporation


Consolidation/Collapse Test Results

Classification: Brown fine Sandy Silt, some Clay

Boring Number:	B-3	Initial Moisture Content (%)	17
Sample Number:	---	Final Moisture Content (%)	20
Depth (ft)	11 to 12	Initial Dry Density (pcf)	111.6
Specimen Diameter (in)	2.4	Final Dry Density (pcf)	114.8
Specimen Thickness (in)	1.0	Percent Collapse (%)	0.00

Moisture/Density Relationship
ASTM D-1557

Soil ID Number	B-6 @ 0-5'
Optimum Moisture (%)	10
Maximum Dry Density (pcf)	127
Soil Classification	Red Brown Silty fine Sand to fine Sandy Clay

Proposed Industrial Building
Beaumont, California
Project No. 21G254-1

PLATE C-9

APPENDIX D

GRADING GUIDE SPECIFICATIONS

These grading guide specifications are intended to provide typical procedures for grading operations. They are intended to supplement the recommendations contained in the geotechnical investigation report for this project. Should the recommendations in the geotechnical investigation report conflict with the grading guide specifications, the more site specific recommendations in the geotechnical investigation report will govern.

General

- The Earthwork Contractor is responsible for the satisfactory completion of all earthwork in accordance with the plans and geotechnical reports, and in accordance with city, county, and applicable building codes.
- The Geotechnical Engineer is the representative of the Owner/Builder for the purpose of implementing the report recommendations and guidelines. These duties are not intended to relieve the Earthwork Contractor of any responsibility to perform in a workman-like manner, nor is the Geotechnical Engineer to direct the grading equipment or personnel employed by the Contractor.
- The Earthwork Contractor is required to notify the Geotechnical Engineer of the anticipated work and schedule so that testing and inspections can be provided. If necessary, work may be stopped and redone if personnel have not been scheduled in advance.
- The Earthwork Contractor is required to have suitable and sufficient equipment on the job-site to process, moisture condition, mix and compact the amount of fill being placed to the approved compaction. In addition, suitable support equipment should be available to conform with recommendations and guidelines in this report.
- Canyon cleanouts, overexcavation areas, processed ground to receive fill, key excavations, subdrains and benches should be observed by the Geotechnical Engineer prior to placement of any fill. It is the Earthwork Contractor's responsibility to notify the Geotechnical Engineer of areas that are ready for inspection.
- Excavation, filling, and subgrade preparation should be performed in a manner and sequence that will provide drainage at all times and proper control of erosion. Precipitation, springs, and seepage water encountered shall be pumped or drained to provide a suitable working surface. The Geotechnical Engineer must be informed of springs or water seepage encountered during grading or foundation construction for possible revision to the recommended construction procedures and/or installation of subdrains.

Site Preparation

- The Earthwork Contractor is responsible for all clearing, grubbing, stripping and site preparation for the project in accordance with the recommendations of the Geotechnical Engineer.
- If any materials or areas are encountered by the Earthwork Contractor which are suspected of having toxic or environmentally sensitive contamination, the Geotechnical Engineer and Owner/Builder should be notified immediately.

- Major vegetation should be stripped and disposed of off-site. This includes trees, brush, heavy grasses and any materials considered unsuitable by the Geotechnical Engineer.
- Underground structures such as basements, cesspools or septic disposal systems, mining shafts, tunnels, wells and pipelines should be removed under the inspection of the Geotechnical Engineer and recommendations provided by the Geotechnical Engineer and/or city, county or state agencies. If such structures are known or found, the Geotechnical Engineer should be notified as soon as possible so that recommendations can be formulated.
- Any topsoil, slopewash, colluvium, alluvium and rock materials which are considered unsuitable by the Geotechnical Engineer should be removed prior to fill placement.
- Remaining voids created during site clearing caused by removal of trees, foundations, basements, irrigation facilities, etc., should be excavated and filled with compacted fill.
- Subsequent to clearing and removals, areas to receive fill should be scarified to a depth of 10 to 12 inches, moisture conditioned and compacted
- The moisture condition of the processed ground should be at or slightly above the optimum moisture content as determined by the Geotechnical Engineer. Depending upon field conditions, this may require air drying or watering together with mixing and/or discing.

Compacted Fills

- Soil materials imported to or excavated on the property may be utilized in the fill, provided each material has been determined to be suitable in the opinion of the Geotechnical Engineer. Unless otherwise approved by the Geotechnical Engineer, all fill materials shall be free of deleterious, organic, or frozen matter, shall contain no chemicals that may result in the material being classified as "contaminated," and shall be very low to non-expansive with a maximum expansion index (EI) of 50. The top 12 inches of the compacted fill should have a maximum particle size of 3 inches, and all underlying compacted fill material a maximum 6-inch particle size, except as noted below.
- All soils should be evaluated and tested by the Geotechnical Engineer. Materials with high expansion potential, low strength, poor gradation or containing organic materials may require removal from the site or selective placement and/or mixing to the satisfaction of the Geotechnical Engineer.
- Rock fragments or rocks less than 6 inches in their largest dimensions, or as otherwise determined by the Geotechnical Engineer, may be used in compacted fill, provided the distribution and placement is satisfactory in the opinion of the Geotechnical Engineer.
- Rock fragments or rocks greater than 12 inches should be taken off-site or placed in accordance with recommendations and in areas designated as suitable by the Geotechnical Engineer. These materials should be placed in accordance with Plate D-8 of these Grading Guide Specifications and in accordance with the following recommendations:
 - Rocks 12 inches or more in diameter should be placed in rows at least 15 feet apart, 15 feet from the edge of the fill, and 10 feet or more below subgrade. Spaces should be left between each rock fragment to provide for placement and compaction of soil around the fragments.
 - Fill materials consisting of soil meeting the minimum moisture content requirements and free of oversize material should be placed between and over the rows of rock or

concrete. Ample water and compactive effort should be applied to the fill materials as they are placed in order that all of the voids between each of the fragments are filled and compacted to the specified density.

- Subsequent rows of rocks should be placed such that they are not directly above a row placed in the previous lift of fill. A minimum 5-foot offset between rows is recommended.
- To facilitate future trenching, oversized material should not be placed within the range of foundation excavations, future utilities or other underground construction unless specifically approved by the soil engineer and the developer/owner representative.
- Fill materials approved by the Geotechnical Engineer should be placed in areas previously prepared to receive fill and in evenly placed, near horizontal layers at about 6 to 8 inches in loose thickness, or as otherwise determined by the Geotechnical Engineer for the project.
- Each layer should be moisture conditioned to optimum moisture content, or slightly above, as directed by the Geotechnical Engineer. After proper mixing and/or drying, to evenly distribute the moisture, the layers should be compacted to at least 90 percent of the maximum dry density in compliance with ASTM D-1557-78 unless otherwise indicated.
- Density and moisture content testing should be performed by the Geotechnical Engineer at random intervals and locations as determined by the Geotechnical Engineer. These tests are intended as an aid to the Earthwork Contractor, so he can evaluate his workmanship, equipment effectiveness and site conditions. The Earthwork Contractor is responsible for compaction as required by the Geotechnical Report(s) and governmental agencies.
- Fill areas unused for a period of time may require moisture conditioning, processing and recompaction prior to the start of additional filling. The Earthwork Contractor should notify the Geotechnical Engineer of his intent so that an evaluation can be made.
- Fill placed on ground sloping at a 5-to-1 inclination (horizontal-to-vertical) or steeper should be benched into bedrock or other suitable materials, as directed by the Geotechnical Engineer. Typical details of benching are illustrated on Plates D-2, D-4, and D-5.
- Cut/fill transition lots should have the cut portion overexcavated to a depth of at least 3 feet and rebuilt with fill (see Plate D-1), as determined by the Geotechnical Engineer.
- All cut lots should be inspected by the Geotechnical Engineer for fracturing and other bedrock conditions. If necessary, the pads should be overexcavated to a depth of 3 feet and rebuilt with a uniform, more cohesive soil type to impede moisture penetration.
- Cut portions of pad areas above buttresses or stabilizations should be overexcavated to a depth of 3 feet and rebuilt with uniform, more cohesive compacted fill to impede moisture penetration.
- Non-structural fill adjacent to structural fill should typically be placed in unison to provide lateral support. Backfill along walls must be placed and compacted with care to ensure that excessive unbalanced lateral pressures do not develop. The type of fill material placed adjacent to below grade walls must be properly tested and approved by the Geotechnical Engineer with consideration of the lateral earth pressure used in the design.

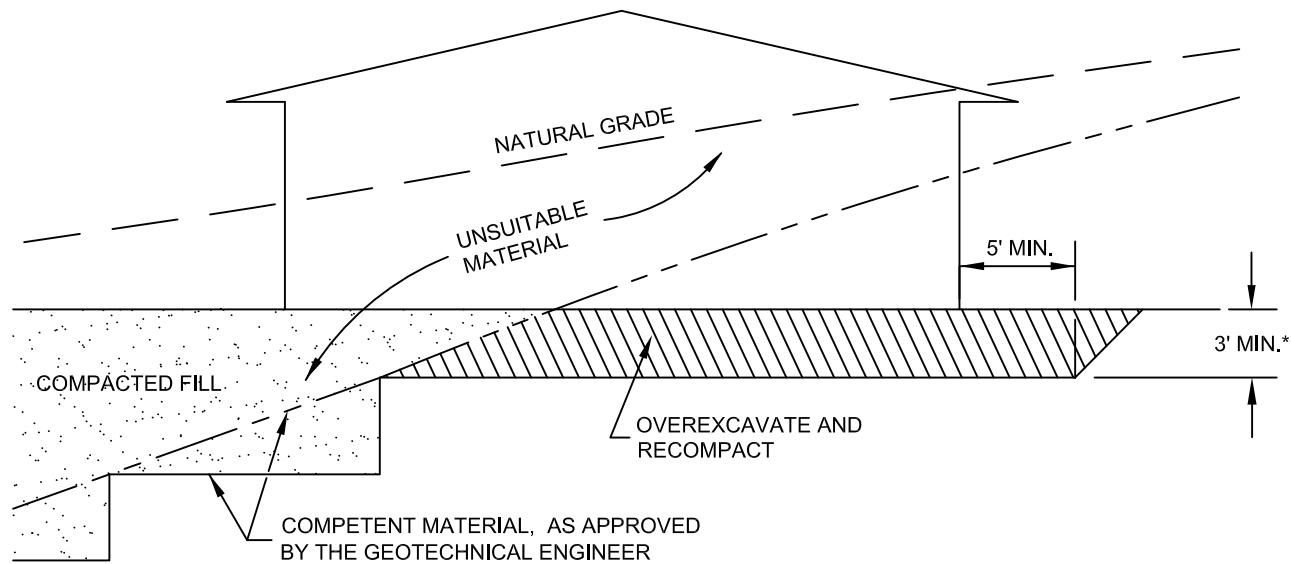
Foundations

- The foundation influence zone is defined as extending one foot horizontally from the outside edge of a footing, and proceeding downward at a $\frac{1}{2}$ horizontal to 1 vertical (0.5:1) inclination.
- Where overexcavation beneath a footing subgrade is necessary, it should be conducted so as to encompass the entire foundation influence zone, as described above.
- Compacted fill adjacent to exterior footings should extend at least 12 inches above foundation bearing grade. Compacted fill within the interior of structures should extend to the floor subgrade elevation.

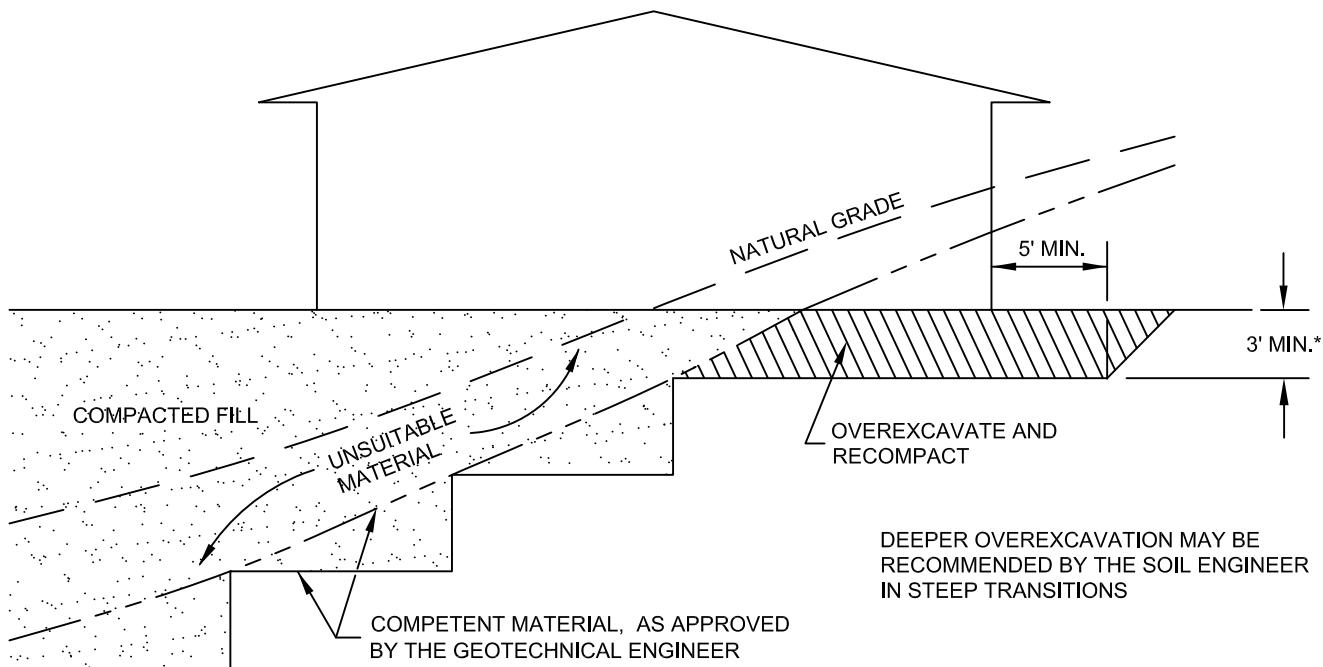
Fill Slopes

- The placement and compaction of fill described above applies to all fill slopes. Slope compaction should be accomplished by overfilling the slope, adequately compacting the fill in even layers, including the overfilled zone and cutting the slope back to expose the compacted core
- Slope compaction may also be achieved by backrolling the slope adequately every 2 to 4 vertical feet during the filling process as well as requiring the earth moving and compaction equipment to work close to the top of the slope. Upon completion of slope construction, the slope face should be compacted with a sheepfoot connected to a sideboom and then grid rolled. This method of slope compaction should only be used if approved by the Geotechnical Engineer.
- Sandy soils lacking in adequate cohesion may be unstable for a finished slope condition and therefore should not be placed within 15 horizontal feet of the slope face.
- All fill slopes should be keyed into bedrock or other suitable material. Fill keys should be at least 15 feet wide and inclined at 2 percent into the slope. For slopes higher than 30 feet, the fill key width should be equal to one-half the height of the slope (see Plate D-5).
- All fill keys should be cleared of loose slough material prior to geotechnical inspection and should be approved by the Geotechnical Engineer and governmental agencies prior to filling.
- The cut portion of fill over cut slopes should be made first and inspected by the Geotechnical Engineer for possible stabilization requirements. The fill portion should be adequately keyed through all surficial soils and into bedrock or suitable material. Soils should be removed from the transition zone between the cut and fill portions (see Plate D-2).

Cut Slopes


- All cut slopes should be inspected by the Geotechnical Engineer to determine the need for stabilization. The Earthwork Contractor should notify the Geotechnical Engineer when slope cutting is in progress at intervals of 10 vertical feet. Failure to notify may result in a delay in recommendations.
- Cut slopes exposing loose, cohesionless sands should be reported to the Geotechnical Engineer for possible stabilization recommendations.
- All stabilization excavations should be cleared of loose slough material prior to geotechnical inspection. Stakes should be provided by the Civil Engineer to verify the location and dimensions of the key. A typical stabilization fill detail is shown on Plate D-5.

- Stabilization key excavations should be provided with subdrains. Typical subdrain details are shown on Plates D-6.


Subdrains

- Subdrains may be required in canyons and swales where fill placement is proposed. Typical subdrain details for canyons are shown on Plate D-3. Subdrains should be installed after approval of removals and before filling, as determined by the Soils Engineer.
- Plastic pipe may be used for subdrains provided it is Schedule 40 or SDR 35 or equivalent. Pipe should be protected against breakage, typically by placement in a square-cut (backhoe) trench or as recommended by the manufacturer.
- Filter material for subdrains should conform to CALTRANS Specification 68-1.025 or as approved by the Geotechnical Engineer for the specific site conditions. Clean $\frac{3}{4}$ -inch crushed rock may be used provided it is wrapped in an acceptable filter cloth and approved by the Geotechnical Engineer. Pipe diameters should be 6 inches for runs up to 500 feet and 8 inches for the downstream continuations of longer runs. Four-inch diameter pipe may be used in buttress and stabilization fills.

CUT LOT

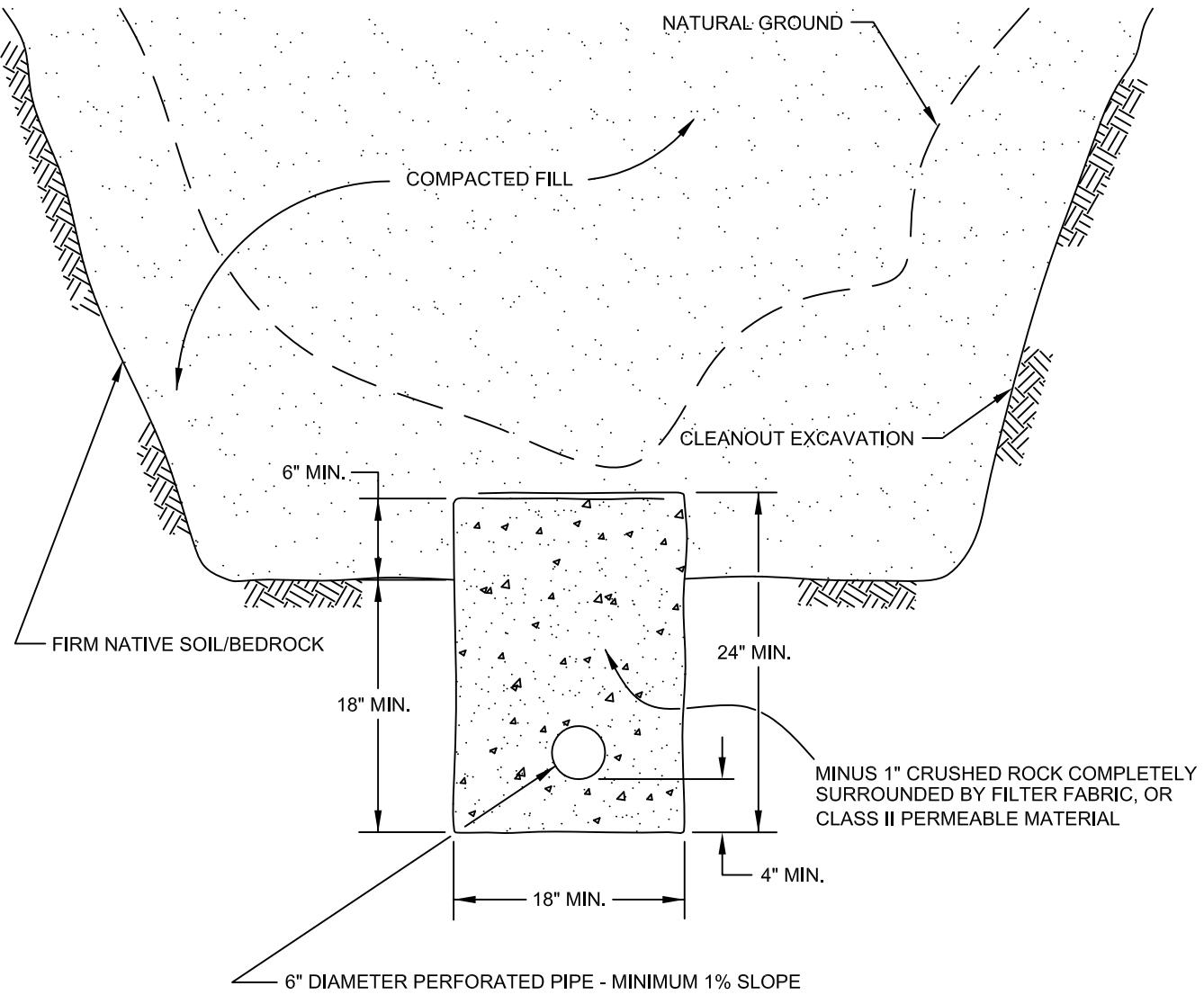


CUT/FILL LOT (TRANSITION)

*SEE TEXT OF REPORT FOR SPECIFIC RECOMMENDATION.
ACTUAL DEPTH OF OVEREXCAVATION MAY BE GREATER.

TRANSITION LOT DETAIL	
GRADING GUIDE SPECIFICATIONS	
NOT TO SCALE	
DRAWN: JAS	
CHKD: GKM	
PLATE D-1	
	SOUTHERN CALIFORNIA GEOTECHNICAL

FILL ABOVE CUT SLOPE DETAIL
GRADING GUIDE SPECIFICATIONS

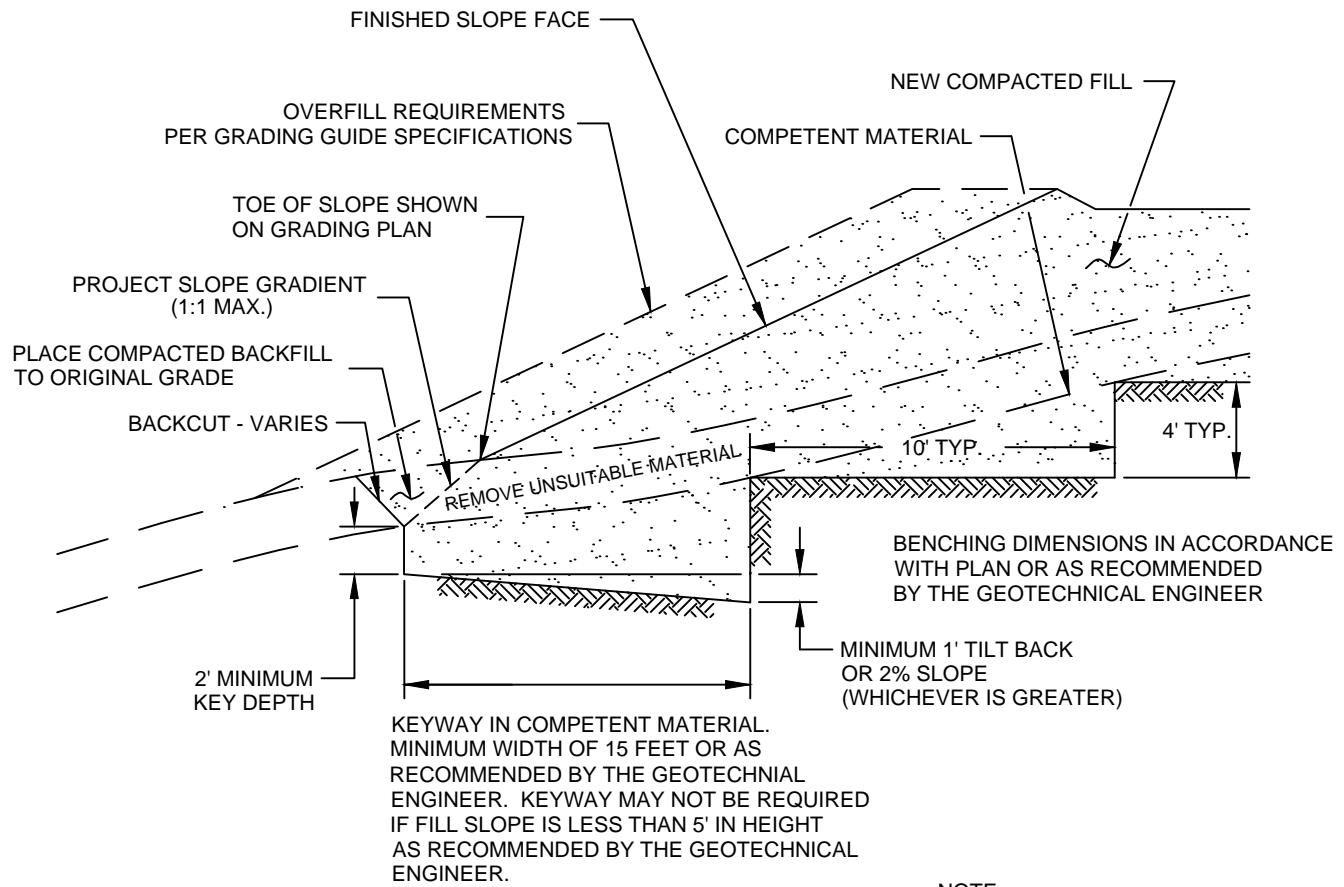

NOT TO SCALE

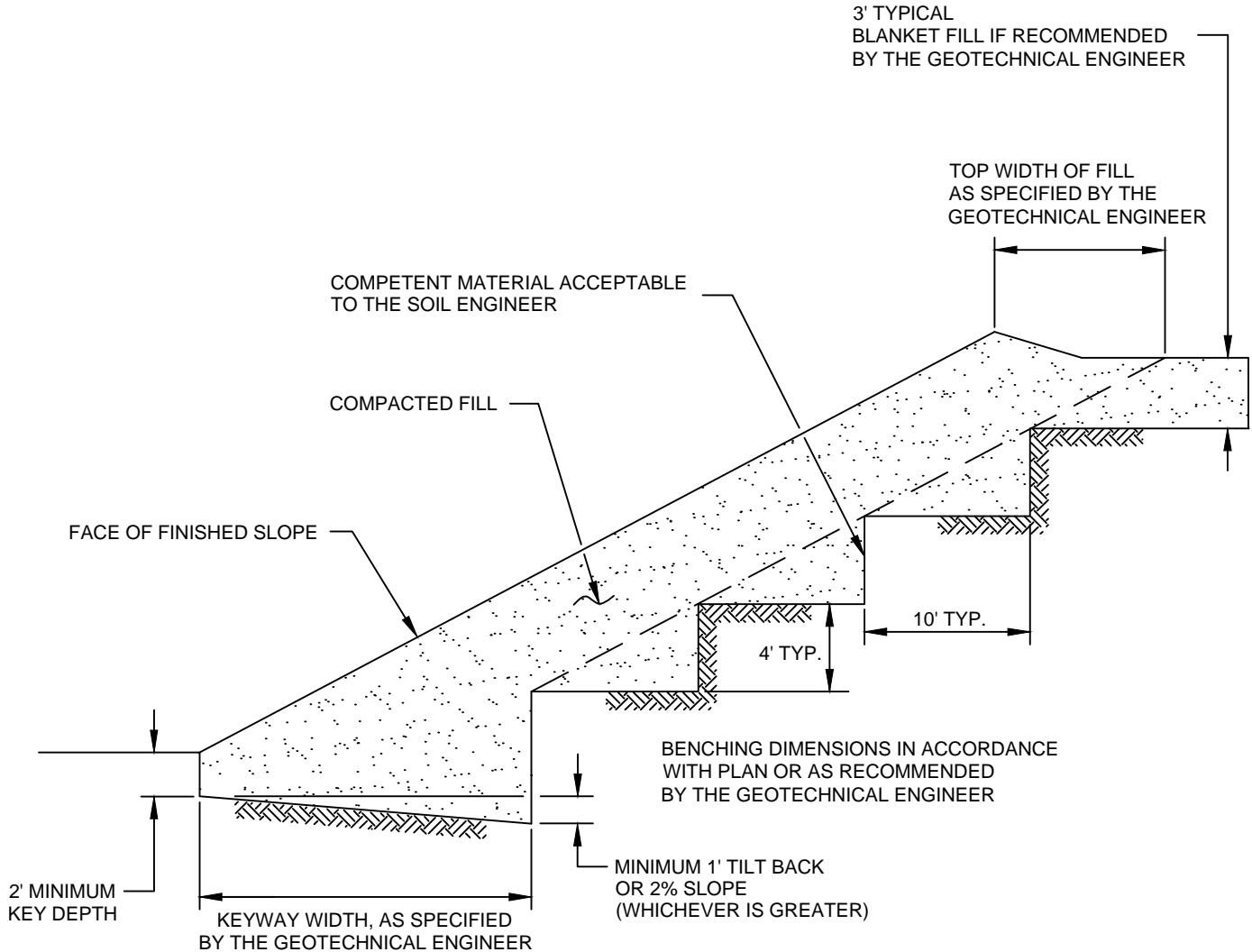
DRAWN: JAS
CHKD: GKM

PLATE D-2

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**

PIPE MATERIAL	DEPTH OF FILL OVER SUBDRAIN
ADS (CORRUGATED POLYETHYLENE)	8
TRANSITE UNDERDRAIN	20
PVC OR ABS: SDR 35	35
SDR 21	100


SCHEMATIC ONLY
NOT TO SCALE


CANYON SUBDRAIN DETAIL
GRADING GUIDE SPECIFICATIONS

NOT TO SCALE
DRAWN: JAS
CHKD: GKM
PLATE D-3

SOUTHERN
CALIFORNIA
GEOTECHNICAL

STABILIZATION FILL DETAIL TRADING GUIDE SPECIFICATIONS

STABILIZATION FILL DETAIL

GRADING GUIDE SPECIFICATIONS

NOT TO SCALE

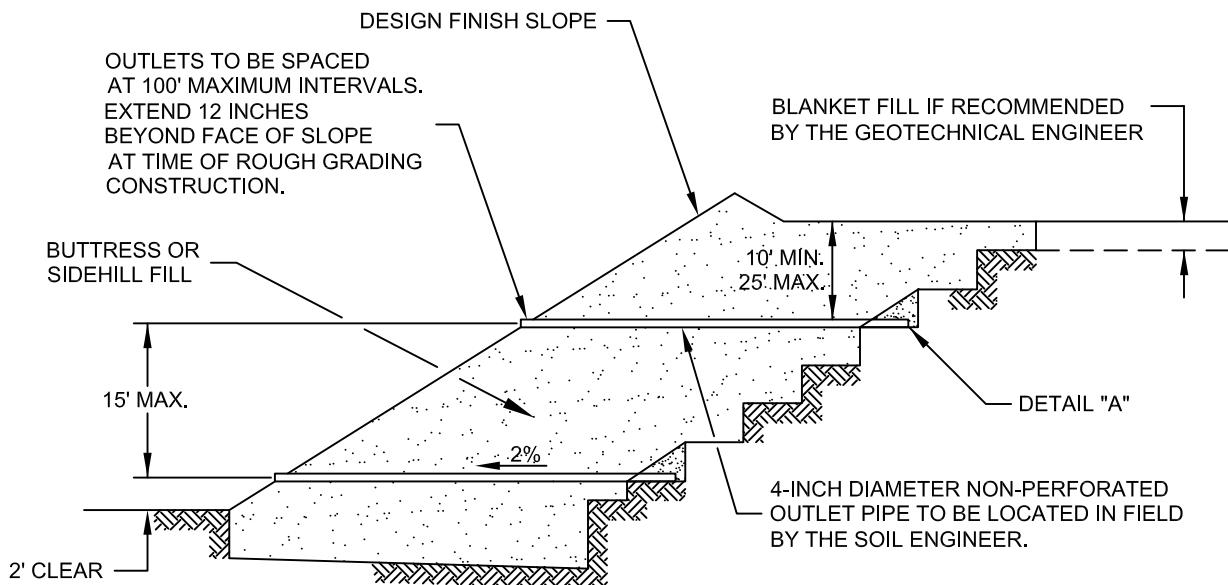
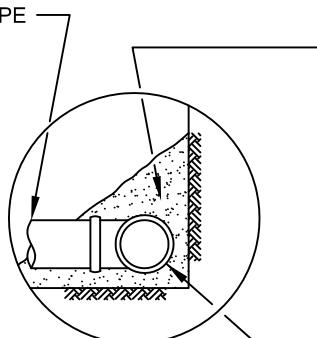

DRAWN: JAS
CHKD: GKM

PLATE D-5

SOUTHERN
CALIFORNIA
GEOTECHNICAL


"FILTER MATERIAL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT: (CONFORMS TO EMA STD. PLAN 323)

SIEVE SIZE	PERCENTAGE PASSING
1"	100
3/4"	90-100
3/8"	40-100
NO. 4	25-40
NO. 8	18-33
NO. 30	5-15
NO. 50	0-7
NO. 200	0-3

"GRAVEL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT:

SIEVE SIZE	MAXIMUM PERCENTAGE PASSING
1 1/2"	100
NO. 4	50
NO. 200	8
SAND EQUIVALENT = MINIMUM OF 50	

OUTLET PIPE TO BE CONNECTED TO SUBDRAIN PIPE WITH TEE OR ELBOW

DETAIL "A"

FILTER MATERIAL - MINIMUM OF FIVE CUBIC FEET PER FOOT OF PIPE. SEE ABOVE FOR FILTER MATERIAL SPECIFICATION.

ALTERNATIVE: IN LIEU OF FILTER MATERIAL FIVE CUBIC FEET OF GRAVEL PER FOOT OF PIPE MAY BE ENCASED IN FILTER FABRIC. SEE ABOVE FOR GRAVEL SPECIFICATION.

FILTER FABRIC SHALL BE MIRAFI 140 OR EQUIVALENT. FILTER FABRIC SHALL BE LAPPED A MINIMUM OF 12 INCHES ON ALL JOINTS.

MINIMUM 4-INCH DIAMETER PVC SCH 40 OR ABS CLASS SDR 35 WITH A CRUSHING STRENGTH OF AT LEAST 1,000 POUNDS, WITH A MINIMUM OF 8 UNIFORMLY SPACED PERFORATIONS PER FOOT OF PIPE INSTALLED WITH PERFORATIONS ON BOTTOM OF PIPE. PROVIDE CAP AT UPSTREAM END OF PIPE. SLOPE AT 2 PERCENT TO OUTLET PIPE.

NOTES:

1. TRENCH FOR OUTLET PIPES TO BE BACKFILLED WITH ON-SITE SOIL.

SLOPE FILL SUBDRAINS GRADING GUIDE SPECIFICATIONS

NOT TO SCALE

DRAWN: JAS
CHKD: GKM

PLATE D-6

SOUTHERN
CALIFORNIA
GEOTECHNICAL

MINIMUM ONE FOOT THICK LAYER OF LOW PERMEABILITY SOIL IF NOT COVERED WITH AN IMPERMEABLE SURFACE

MINIMUM ONE FOOT WIDE LAYER OF FREE DRAINING MATERIAL (LESS THAN 5% PASSING THE #200 SIEVE) OR PROPERLY INSTALLED PREFABRICATED DRAINAGE COMPOSITE (MiraDRAIN 6000 OR APPROVED EQUIVALENT).

FILTER MATERIAL - MINIMUM OF TWO CUBIC FEET PER FOOT OF PIPE. SEE BELOW FOR FILTER MATERIAL SPECIFICATION.

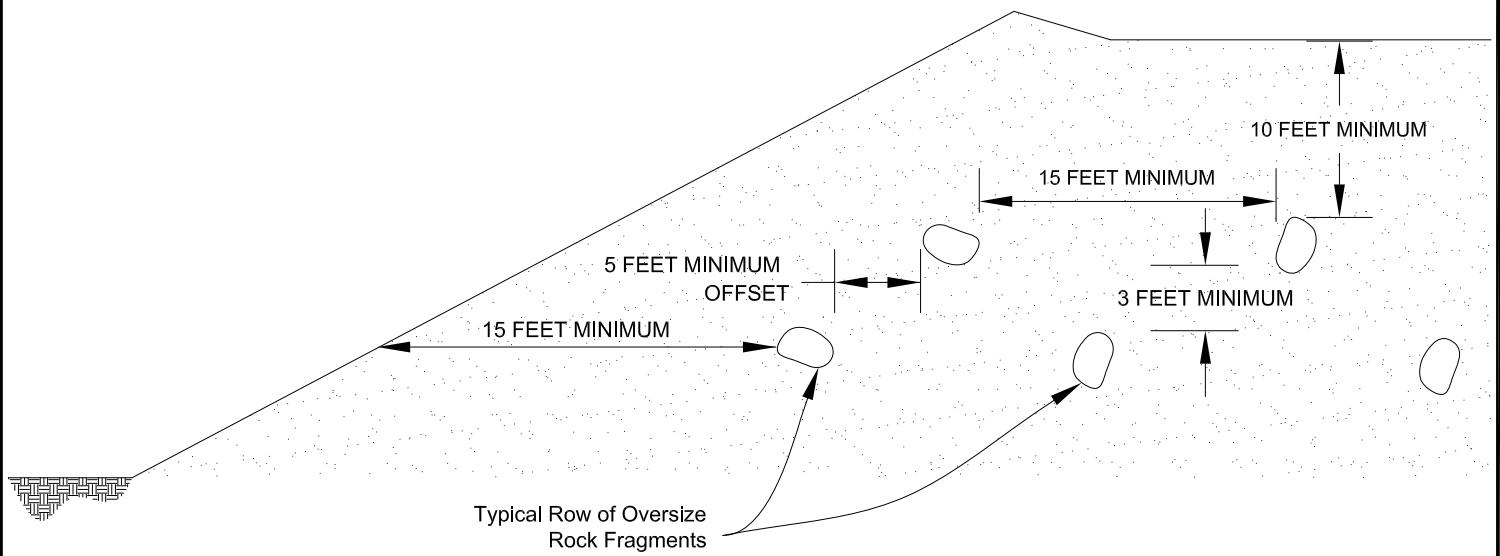
ALTERNATIVE: IN LIEU OF FILTER MATERIAL TWO CUBIC FEET OF GRAVEL PER FOOT OF PIPE MAY BE ENCASED IN FILTER FABRIC. SEE BELOW FOR GRAVEL SPECIFICATION.

FILTER FABRIC SHALL BE MIRAFI 140 OR EQUIVALENT. FILTER FABRIC SHALL BE LAPPED A MINIMUM OF 6 INCHES ON ALL JOINTS.

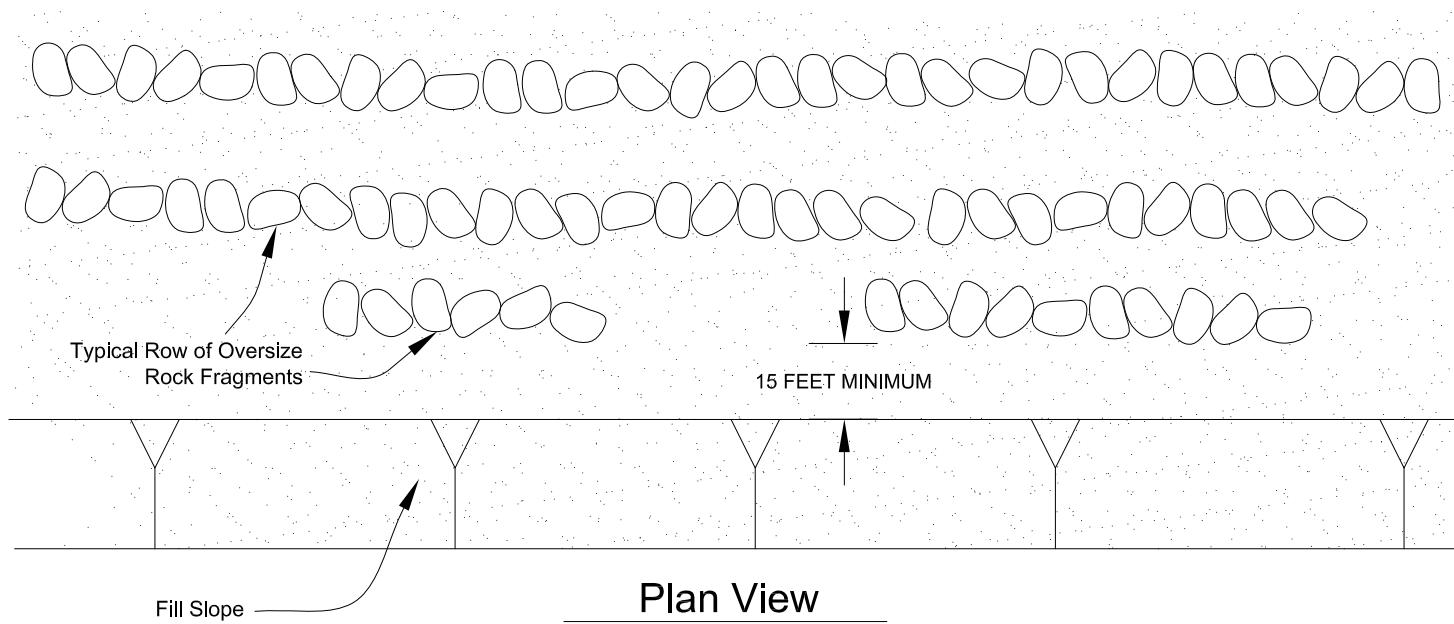
MINIMUM 4-INCH DIAMETER PVC SCH 40 OR ABS CLASS SDR 35 WITH A CRUSHING STRENGTH OF AT LEAST 1,000 POUNDS, WITH A MINIMUM OF 8 UNIFORMLY SPACED PERFORATIONS PER FOOT OF PIPE INSTALLED WITH PERFORATIONS ON BOTTOM OF PIPE. PROVIDE CAP AT UPSTREAM END OF PIPE. SLOPE AT 2 PERCENT TO OUTLET PIPE.

"FILTER MATERIAL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT: (CONFORMS TO EMA STD. PLAN 323)

SIEVE SIZE	PERCENTAGE PASSING
1"	100
3/4"	90-100
3/8"	40-100
NO. 4	25-40
NO. 8	18-33
NO. 30	5-15
NO. 50	0-7
NO. 200	0-3


"GRAVEL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT:

SIEVE SIZE	MAXIMUM PERCENTAGE PASSING
1 1/2"	100
NO. 4	50
NO. 200	8


SAND EQUIVALENT = MINIMUM OF 50

RETAINING WALL BACKDRAINS	
GRADING GUIDE SPECIFICATIONS	
NOT TO SCALE	
DRAWN: JAS	
CHKD: GKM	
PLATE D-7	

SOUTHERN
CALIFORNIA
GEOTECHNICAL

Section View

Plan View

PLACEMENT OF OVERSIZED MATERIAL
GRADING GUIDE SPECIFICATIONS

NOT TO SCALE

DRAWN: PM
CHKD: GKM

PLATE D-8

SOUTHERN
CALIFORNIA
GEOTECHNICAL

APPENDIX E

OSHPD

Latitude, Longitude: 33.931748, -116.996755

Date	11/11/2021, 2:20:41 PM
Design Code Reference Document	ASCE7-16
Risk Category	III
Site Class	D - Stiff Soil

Type	Value	Description
S_S	1.658	MCE_R ground motion. (for 0.2 second period)
S_1	0.6	MCE_R ground motion. (for 1.0s period)
S_{MS}	1.658	Site-modified spectral acceleration value
S_{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S_{DS}	1.105	Numeric seismic design value at 0.2 second SA
S_{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Type	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
F_a	1	Site amplification factor at 0.2 second
F_v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.678	MCE_G peak ground acceleration
F_{PGA}	1.1	Site amplification factor at PGA
PGA_M	0.745	Site modified peak ground acceleration
T_L	8	Long-period transition period in seconds
SsRT	2.093	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	2.28	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.658	Factored deterministic acceleration value. (0.2 second)
S1RT	0.807	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.905	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.678	Factored deterministic acceleration value. (Peak Ground Acceleration)
C_{RS}	0.918	Mapped value of the risk coefficient at short periods
C_{R1}	0.892	Mapped value of the risk coefficient at a period of 1 s

SEISMIC DESIGN PARAMETERS - 2019 CBC

PROPOSED INDUSTRIAL BUILDING

BEAUMONT, CALIFORNIA

SOURCE: SEAOC/OSHPD Seismic Design Maps Tool
<<https://seismicmaps.org/>>

DRAWN: MD
CHKD: GKM
SCG PROJECT
21G254-1
PLATE E-1

SOUTHERN
CALIFORNIA
GEOTECHNICAL

November 24, 2021

Trammell Crow Company
3501 Jamboree Road, Suite 230
Newport Beach, California 92660

Attention: Mr. Kyle Dorand
Vice President - Development

Project No.: **21G254-2**

Subject: **Results of Infiltration Testing**
Proposed Industrial Building
Nicholas Road, North of West 4th Street
Beaumont, California

Reference: Geotechnical Investigation, Proposed Industrial Building, Nicholas Road, North of West 4th Street, Beaumont, California, prepared by Southern California Geotechnical, Inc. (SCG), prepared for Trammell Crow Company, SCG Project No. 21G254-1, dated November 22, 2021.

Mr. Dorand:

In accordance with your request, we have conducted infiltration testing at the subject site. We are pleased to present this report summarizing the results of the infiltration testing and our design recommendations.

Scope of Services

The scope of services performed for this project was in general accordance with our Proposal No. 21P456, dated October 13, 2021. The scope of services included site reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the onsite soils. The infiltration testing was performed in general accordance with the guidelines published in Riverside County – Low Impact Development BMP Design Handbook – Section 2.3 of Appendix A, prepared for the Riverside County Department of Environmental Health (RCDEH), dated December, 2013.

Site and Project Description

The subject site is located immediately northwest of the terminus of the Nicholas Road cul-de-sac, 1300± feet north of the intersection with West 4th Street in Beaumont, California. The site is bounded to the north by the Moreno Valley Freeway (60), to the east by an existing industrial building, to the south by an existing commercial/industrial building and vacant land and to the west by Western Knolls Avenue and an Amazon distribution facility. The general location of the site is illustrated on the Site Location Map, included as Plate 1 of this report.

The site consists of a roughly rectangular-shaped parcel, 30.9± acres in size. The site is presently developed as the Dowling Fruit Orchard. Three (3) buildings, ranging in size from 4,500 to 5,200± ft², are located in the northwest area of the site. Two (2) of the buildings are of wood-frame and

stucco construction. The remaining building is of steel frame and metal panel construction. Ground surface cover on the west side of the buildings consists of Portland cement concrete and asphaltic concrete. The pavements are in fair condition with moderate cracking throughout. One (1) above-ground storage (AST) is located just east of the aforementioned buildings. Additionally, one (1) shade structure is also located in the northwest area of the site. The shade structure is of wood frame construction with a metal panel roof. This area is used for storing farming equipment. One (1) single-family residence (SFR) is located near the middle of the western property line. Ground surface cover surrounding the single-family residence consists of exposed soil with several large trees. A single dry-well is located in the central area of the site. The remaining areas of the site are presently planted with several types of medium to large fruit trees. Ground surface cover in these areas consists of exposed soil.

Detailed topographic information was not available at the time of this report. Based on elevations obtained from Google Earth and visual observations made at the time of the subsurface investigation, the southern three-quarters of the site slopes downward to the south at a gradient of $2\pm$ percent. The northern quarter of the site slopes downward to the north at a gradient of $1\pm$ percent.

Proposed Development

Based on a conceptual site plan provided to our office by the client, the site will be developed with one (1) new industrial building, $600,000\pm$ ft² in size, located in the central area of the site. The building will be constructed in a cross-dock configuration, with docks along most of the east and west building walls. It is expected that the building will be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete pavements in the loading dock areas, and limited areas of concrete flatwork and landscape planters.

The proposed development will include on-site stormwater infiltration. The infiltration system will consist of a detention/infiltration basin located in the western area of the site. The bottom of the infiltration system will extend to a depth of $15\pm$ feet below the existing site grades. It should be noted that the site plan was changed from the time of the field investigation to the issuance of this report. Therefore, none of the infiltration tests are located within the currently proposed location of the detention/infiltration basin.

Concurrent Study

SCG concurrently conducted a geotechnical investigation at the subject site, also referenced above. As part of this study, seven (7) borings advanced to depths of 15 to $50\pm$ feet below the existing site grades. Artificial fill soils were encountered at the ground surface or beneath the gravel surface extending to depths of $2\frac{1}{2}$ to $4\frac{1}{2}\pm$ feet below ground surface. The fill soils generally consist of medium dense to dense clayey fine sands, silty fine sands and fine sandy silts, and very stiff fine sandy clays. Possible fill soils were encountered at two of the borings extending to depths of $5\frac{1}{2}$ to $6\frac{1}{2}\pm$ feet. The possible fill soils consist of very stiff fine sandy clay and loose to medium dense silty fine sand. Native alluvium was encountered beneath the fill or possible fill soils at all of the boring locations, extending to at least the maximum depth explored of $50\pm$ feet below ground surface. The near-surface alluvial soils, within the upper $4\frac{1}{2}$ to $8\pm$ feet, generally consist of stiff fine sandy clay and medium dense clayey fine sand. These soils possess slight cementation. At depths greater than $8\pm$ feet, the alluvial soils generally consist of medium

dense to dense silty fine sand and fine sandy silt. These soils possess trace to some clay and occasional cementation. Occasional layers of medium dense to very dense fine to medium sand, fine to coarse sand and very stiff clayey silt were encountered between depths of 17 to $50\pm$ feet below ground surface.

Groundwater

Free water was not encountered during the drilling of any of the borings. Based on the moisture content of the recovered soil samples and the lack of free water in the borings, the static groundwater table is at a greater depth than $50\pm$ feet below existing site grades.

Historic and recent water level data was obtained from the California Department of Water Resources website, <http://www.water.ca.gov/waterdatabrary/>. One monitoring well on record is located $1,312\pm$ feet east of the site. Water level readings within this monitoring well indicate a high groundwater level of $226\pm$ feet below ground surface in November 1991, and $149\pm$ feet below the ground surface in October 2010.

Subsurface Exploration

Scope of Exploration

The subsurface exploration conducted for the infiltration testing consisted of three (3) infiltration test borings, advanced to a depth of $15\pm$ feet below the existing site grades. The infiltration borings were advanced using a truck-mounted drilling rig, equipped with 8-inch-diameter hollow stem augers and were logged during drilling by a member of our staff. The approximate locations of the infiltration test borings (identified as I-1 through I-3) are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report.

Upon the completion of the infiltration borings, the bottom of each test boring was covered with $2\pm$ inches of clean $\frac{3}{4}$ -inch gravel. A sufficient length of 3-inch-diameter perforated PVC casing was then placed into each test hole so that the PVC casing extended from the bottom of the test hole to the ground surface. Clean $\frac{3}{4}$ -inch gravel was then installed in the annulus surrounding the PVC casing.

Geotechnical Conditions

Artificial fill soils were encountered at the ground surface extending to depths of $2\frac{1}{2}\pm$ feet below ground surface. The fill soils generally consist of stiff fine sandy clays. Native alluvial soils were encountered beneath the fill soils at all of the infiltration test boring locations, extending to at least the maximum explored depth of $15\pm$ feet below existing site grades. The near-surface alluvium generally consists of stiff fine sandy clays extending to a depth of $7\pm$ feet. At greater depths, the alluvium consists of loose to medium dense silty fine to medium sands to fine sandy silts and fine to coarse sands with little silt. The Boring Logs, which illustrate the conditions encountered at the boring locations, are included with this report.

Infiltration Testing

As previously mentioned, the infiltration testing was performed in general accordance with the Riverside County guidelines: Riverside County – Low Impact Development BMP Design Handbook – Section 2.3 of Appendix A.

Pre-soaking

In accordance with the county infiltration standards both of the infiltration test borings were pre-soaked prior to the infiltration testing. The pre-soaking process consisted of filling the test borings by inverting a full 5-gallon bottle of clear water supported over each hole so that the water level reaches a level of at least 5 times the hole's radius above the gravel at the bottom of each hole. The pre-soaking was completed after all of the water had percolated through each test hole or after 15 hours since initiating the pre-soak. Based on the results of the pre-soaking process, different infiltration procedures were used during the infiltration testing at the infiltration boring locations.

Infiltration Testing

Following the pre-soaking process of the infiltration test borings, SCG performed the infiltration testing. Each test hole was filled with water to a depth of at least 5 times the hole's radius above the gravel at the bottom of each test hole. In accordance with the Riverside County guidelines, in areas where "non-sandy soils" were encountered at the bottom of the infiltration test borings (where 6 inches of water did not infiltrate into the surrounding soils in less than 25 minutes for two (2) consecutive readings), readings were taken at 30-minute intervals for a total of 6 hours at the test location. The water level readings are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on the spreadsheets.

The infiltration rates from the test are tabulated in inches per hour. In accordance with the typically accepted practice, it is recommended that the most conservative reading from the latter part of the infiltration tests be used as the design infiltration rate. The rates are summarized below:

<u>Infiltration Test No.</u>	<u>Depth (feet)</u>	<u>Soil Description</u>	<u>Infiltration Rate (inches/hour)</u>
I-1	15	Gray Brown Silty fine to coarse Sand, little fine Gravel, little Silt	0.2
I-2	15	Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay	0.1
I-3	15	Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay	0.0

Laboratory Testing

Moisture Content

The moisture contents for the recovered soil samples within the borings were determined in accordance with ASTM D-2216 and are expressed as a percentage of the dry weight. These test results are presented on the Boring Logs.

Grain Size Analysis

The grain size distribution of selected soils collected from the bottom of each infiltration test boring have been determined using a range of wire mesh screens. These tests were performed in general accordance with ASTM D-422 and/or ASTM D-1140. The weight of the portion of the sample retained on each screen is recorded and the percentage finer or coarser of the total weight is calculated. The results of these tests are presented on Plates C-1 through C-3 of this report.

Design Recommendations

Three (3) infiltration tests were performed at the subject site. As noted above, the calculated infiltration rates at the infiltration test locations range from 0.0 to 0.2 inches per hour. **Based on the results of infiltration testing, infiltration is not recommended for a proposed infiltration system located in the southern area of the site.** As noted above, none of the infiltration tests were performed within the proposed infiltration system located in the western area of the site. However, based on the subsurface data collected during the concurrent geotechnical investigation, we expect the infiltration characteristics will be similar in the western area of the site to the southern area of the site.

General Comments

This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the infiltration system is the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. By using the design infiltration rates contained herein, the civil engineer agrees to indemnify, defend, and hold harmless the geotechnical engineer for all aspects of the design and performance of the infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur. The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between trench locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

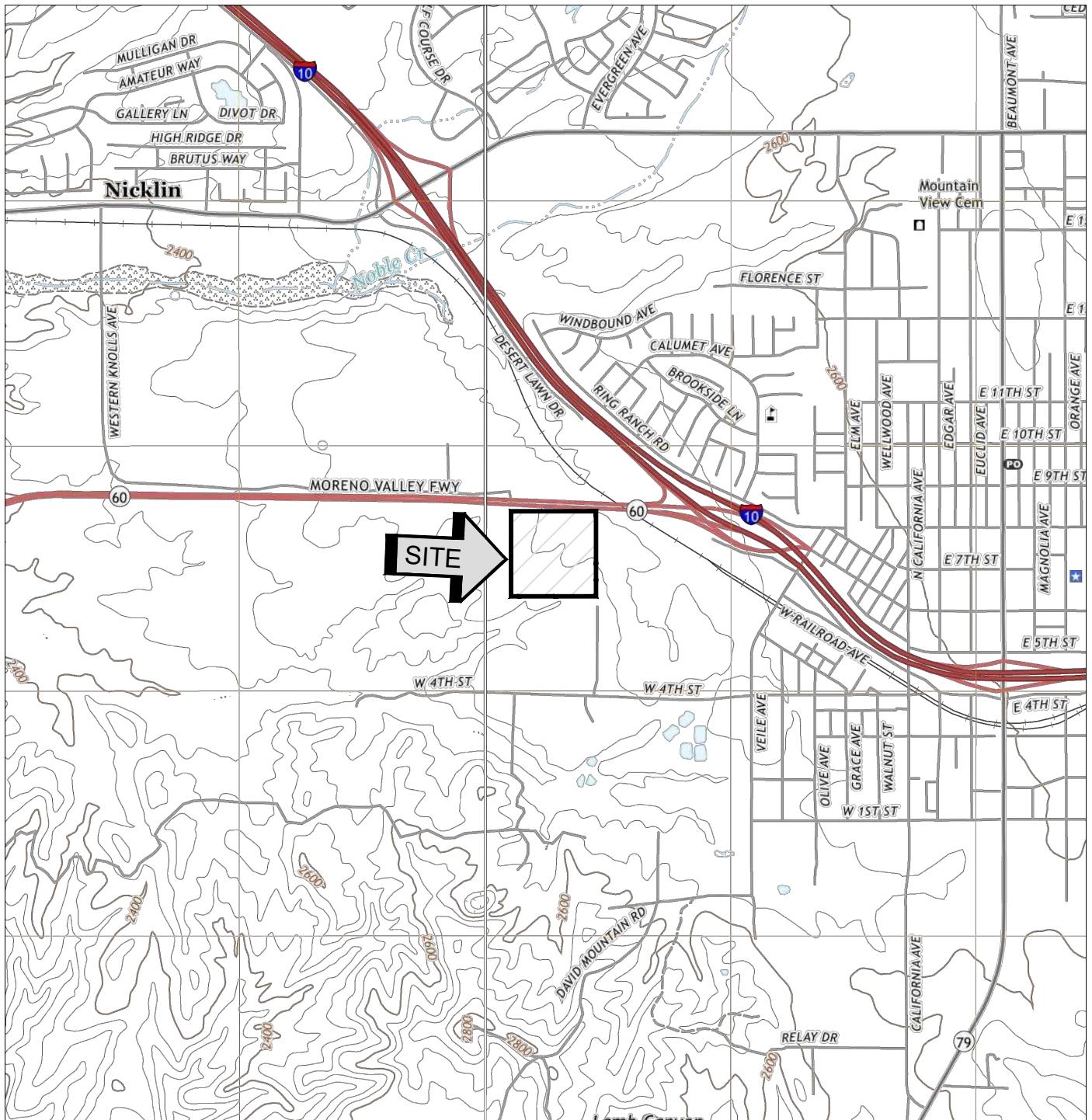
Closure

We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

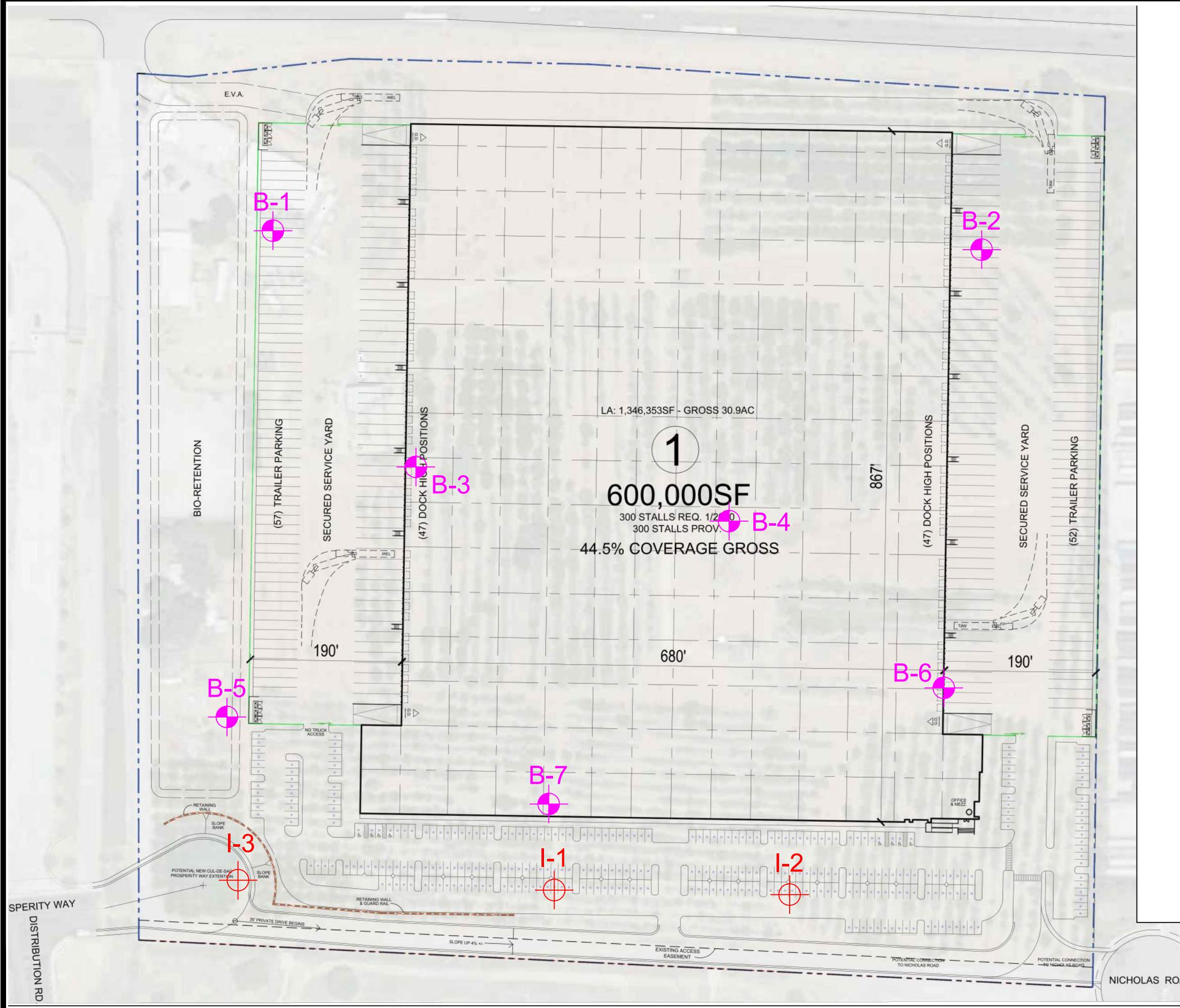
Respectfully Submitted,

SOUTHERN CALIFORNIA GEOTECHNICAL, INC.

Daryl Kas, CEG 2467
Senior Geologist



Gregory K. Mitchell, GE 2364
Principal Engineer


Distribution: (1) Addressee

Enclosures: Plate 1 - Site Location Map
Plate 2 - Infiltration Test Location Plan
Boring Log Legend and Logs (5 pages)
Infiltration Test Results Spreadsheets (3 pages)
Grain Size Distribution Graphs (3 pages)

SOURCE: USGS TOPOGRAPHIC MAP OF THE BEAUMONT AND EL CASCO QUADRANGLES, RIVERSIDE COUNTY, CALIFORNIA, 2018.

GEOTECHNICAL LEGEND

- APPROXIMATE INFILTRATION LOCATION
- APPROXIMATE BORING LOCATION
(SCG PROJECT NO. 21G254-1)

INFILTRATION TEST LOCATION PLAN

PROPOSED INDUSTRIAL BUILDING

BEAUMONT, CALIFORNIA

SCALE 1" = 120'

DRAWN: MD

DRAWN: MD
CHKD: GKM

SCG PROJECT

21G254-2

PLATE 2

SOUTHERN
CALIFORNIA
GEOTECHNICAL

BORING LOG LEGEND

SAMPLE TYPE	GRAPHICAL SYMBOL	SAMPLE DESCRIPTION
AUGER		SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED)
CORE		ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK.
GRAB		SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED)
CS		CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED)
NSR		NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL.
SPT		STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED)
SH		SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED)
VANE		VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED.

COLUMN DESCRIPTIONS

DEPTH:	Distance in feet below the ground surface.
SAMPLE:	Sample Type as depicted above.
BLOW COUNT:	Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3" indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.
POCKET PEN.:	Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.
GRAPHIC LOG:	Graphic Soil Symbol as depicted on the following page.
DRY DENSITY:	Dry density of an undisturbed or relatively undisturbed sample in lbs/ft ³ .
MOISTURE CONTENT:	Moisture content of a soil sample, expressed as a percentage of the dry weight.
LIQUID LIMIT:	The moisture content above which a soil behaves as a liquid.
PLASTIC LIMIT:	The moisture content above which a soil behaves as a plastic.
PASSING #200 SIEVE:	The percentage of the sample finer than the #200 standard sieve.
UNCONFINED SHEAR:	The shear strength of a cohesive soil sample, as measured in the unconfined state.

SOIL CLASSIFICATION CHART

MAJOR DIVISIONS			SYMBOLS		TYPICAL DESCRIPTIONS
			GRAPH	LETTER	
COARSE GRAINED SOILS MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	GRAVEL AND GRAVELLY SOILS MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	CLEAN GRAVELS (LITTLE OR NO FINES)		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
		GRAVELS WITH FINES (APPRECIABLE AMOUNT OF FINES)		GP	Poorly-graded gravels, gravel - sand mixtures, little or no fines
				GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
				GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
	SAND AND SANDY SOILS MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	CLEAN SANDS (LITTLE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
				SP	Poorly-graded sands, gravelly sand, little or no fines
		SANDS WITH FINES (APPRECIABLE AMOUNT OF FINES)		SM	SILTY SANDS, SAND - SILT MIXTURES
				SC	CLAYEY SANDS, SAND - CLAY MIXTURES
FINE GRAINED SOILS MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS LIQUID LIMIT LESS THAN 50			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
				MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50			CH	INORGANIC CLAYS OF HIGH PLASTICITY
				OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
				PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS
		HIGHLY ORGANIC SOILS			

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS				COMMENTS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRILLING DATE: 10/27/21	DRILLING METHOD: Hollow Stem Auger	WATER DEPTH: ---	CAVE DEPTH: ---			
SURFACE ELEVATION: --- MSL												
Boring Terminated at 15												
5					FILL: Red Brown fine Sandy Clay, slightly porous, stiff-damp	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT			
10					ALLUVIUM: Brown fine Sandy Clay, trace medium Sand, slightly cemented, stiff-damp	10						
14		19	4.5		Brown fine Sandy Silt, trace medium Sand, medium dense-moist	16						
15					Gray Brown fine to coarse Sand, little fine Gravel, little Silt, medium dense-damp	4						

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS				COMMENTS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRILLING DATE: 10/27/21	DRILLING METHOD: Hollow Stem Auger	WATER DEPTH: ---	CAVE DEPTH: ---			
SURFACE ELEVATION: --- MSL												
Boring Terminated at 15'												
5		9	4.5		<u>FILL</u> : Red Brown fine Sandy Clay, slightly porous, stiff-damp		DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)
10		9			ALLUVIUM: Brown fine Sandy Clay, trace medium to coarse Sand, trace fine Gravel, stiff-damp to moist	12						
15		19			Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, loose-moist	15						
						18						

FIELD RESULTS				GRAPHIC LOG	DESCRIPTION	LABORATORY RESULTS				COMMENTS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)			DRILLING DATE: 10/27/21	DRILLING METHOD: Hollow Stem Auger	WATER DEPTH: ---	CAVE DEPTH: ---			
SURFACE ELEVATION: --- MSL												
5					<u>FILL</u> : Red Brown fine Sandy Clay to Clayey fine Sand, slightly porous, stiff to medium dense-damp							
11		18	4.5		ALLUVIUM: Brown fine Sandy Clay, slightly cemented, stiff-moist		15					
10					@ 9½', 2±-inch fine to medium Sand lens		13					
17					Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, medium dense-moist		15					
15					Boring Terminated at 15'							

INFILTRATION CALCULATIONS

Project Name	Proposed Industrial Building
Project Location	Beaumont, California
Project Number	21G254-2
Engineer	CB

Test Hole Radius	4 (in)
Test Depth	14.90 (ft)

Infiltration Test Hole	I-1
------------------------	-----

Soil Criteria Test							
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non-Sandy Soils?
1	Initial	7:37 AM	25.00	12.20	1.92	NO	NON-SANDY SOILS
	Final	8:02 AM		12.36			
2	Initial	8:02 AM	25.00	12.20	1.80	NO	NON-SANDY SOILS
	Final	8:27 AM		12.35			

Test Data							
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	8:30 AM	30.00	12.20	0.15	2.63	0.21
	Final	9:00 AM		12.35			
2	Initial	9:00 AM	30.00	12.20	0.14	2.63	0.20
	Final	9:30 AM		12.34			
3	Initial	9:30 AM	30.00	12.20	0.13	2.64	0.19
	Final	10:00 AM		12.33			
4	Initial	10:00 AM	30.00	12.20	0.13	2.64	0.19
	Final	10:30 AM		12.33			
5	Initial	10:30 AM	30.00	12.20	0.12	2.64	0.17
	Final	11:00 AM		12.32			
6	Initial	11:00 AM	30.00	12.20	0.12	2.64	0.17
	Final	11:30 AM		12.32			

Per County Standards, Infiltration Rate calculated as follows:

Where:

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Q = Infiltration Rate (in inches per hour)
 ΔH = Change in Height (Water Level) over the time interval
 r = Test Hole (Borehole) Radius
 Δt = Time Interval
 H_{avg} = Average Head Height over the time interval

INFILTRATION CALCULATIONS

Project Name	Proposed Industrial Building
Project Location	Beaumont, California
Project Number	21G254-2
Engineer	CB

Test Hole Radius	4 (in)
Test Depth	15.10 (ft)

Infiltration Test Hole	I-2
------------------------	-----

Soil Criteria Test							
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non-Sandy Soils?
1	Initial	9:29 AM	25.00	12.20	1.20	NO	NON-SANDY SOILS
	Final	9:54 AM		12.30			
2	Initial	9:54 AM	25.00	12.20	1.20	NO	NON-SANDY SOILS
	Final	10:19 AM		12.30			

Test Data							
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	10:18 AM	30.00	12.20	0.13	2.84	0.17
	Final	10:48 AM		12.33			
2	Initial	10:50 AM	30.00	12.20	0.13	2.84	0.17
	Final	11:20 AM		12.33			
3	Initial	11:20 AM	30.00	12.20	0.11	2.85	0.15
	Final	11:50 AM		12.31			
4	Initial	11:50 AM	30.00	12.20	0.12	2.84	0.16
	Final	12:20 PM		12.32			
5	Initial	12:20 PM	30.00	12.20	0.10	2.85	0.13
	Final	12:50 PM		12.30			
6	Initial	12:50 PM	30.00	12.20	0.10	2.85	0.13
	Final	1:20 PM		12.30			

Per County Standards, Infiltration Rate calculated as follows:

Where:

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Q = Infiltration Rate (in inches per hour)
 ΔH = Change in Height (Water Level) over the time interval
 r = Test Hole (Borehole) Radius
 Δt = Time Interval
 H_{avg} = Average Head Height over the time interval

INFILTRATION CALCULATIONS

Project Name	Proposed Industrial Building
Project Location	Beaumont, California
Project Number	21G254-2
Engineer	CB

Test Hole Radius	4 (in)
Test Depth	15.00 (ft)

Infiltration Test Hole	I-3
------------------------	-----

Soil Criteria Test							
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non-Sandy Soils?
1	Initial	11:11 AM	25.00	11.65	0.60	NO	NON-SANDY SOILS
	Final	11:36 AM		11.70			
2	Initial	11:36 AM	25.00	11.70	0.60	NO	NON-SANDY SOILS
	Final	12:01 PM		11.75			

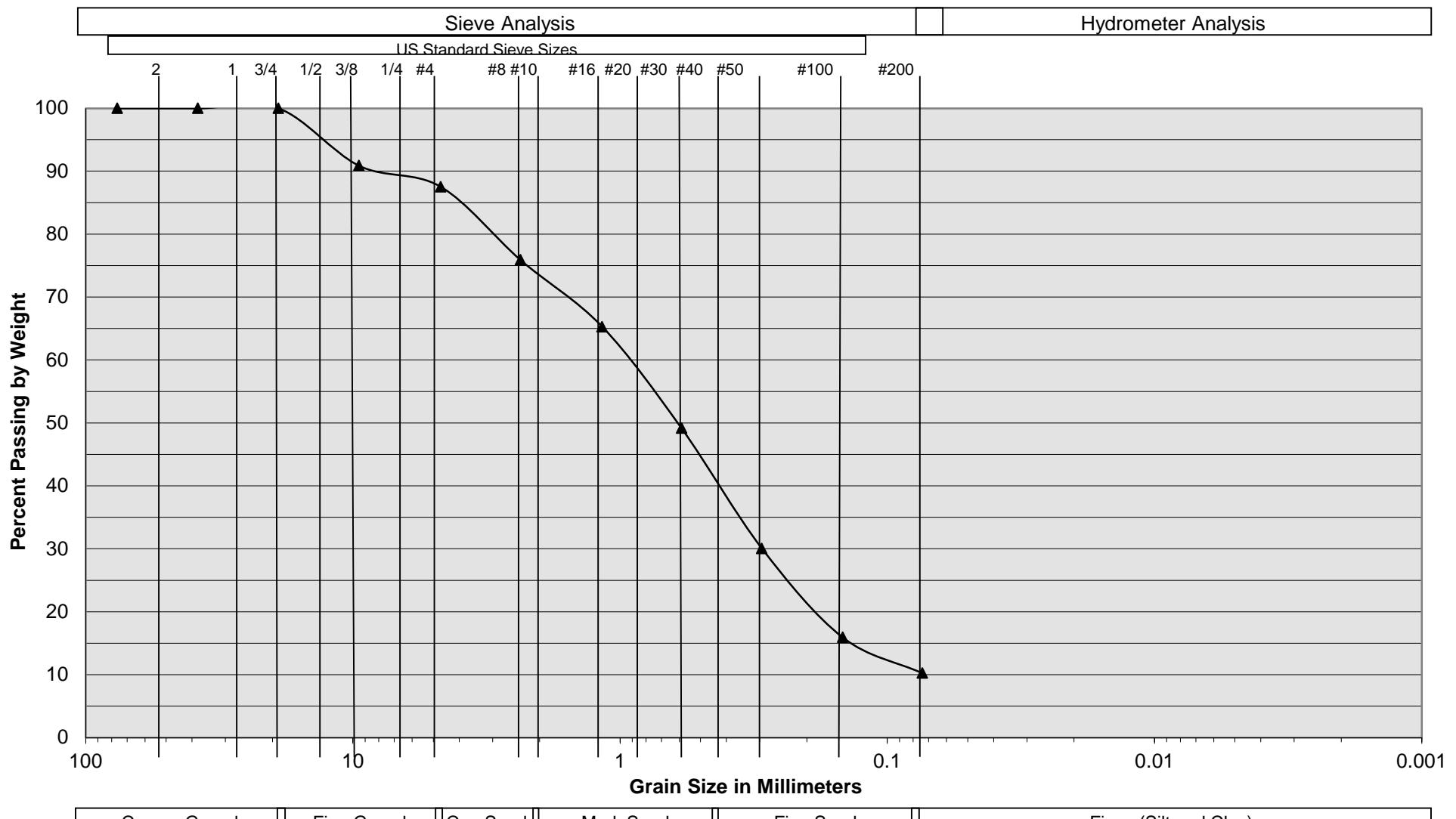
Test Data							
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	12:01 PM	30.00	11.70	0.06	3.27	0.07
	Final	12:31 PM		11.76			
2	Initial	12:31 PM	30.00	11.70	0.06	3.27	0.07
	Final	1:01 PM		11.76			
3	Initial	1:01 PM	30.00	11.70	0.05	3.28	0.06
	Final	1:31 PM		11.75			
4	Initial	1:31 PM	30.00	11.70	0.04	3.28	0.05
	Final	2:01 PM		11.74			
5	Initial	2:01 PM	30.00	11.70	0.05	3.28	0.06
	Final	2:31 PM		11.75			
6	Initial	2:31 PM	30.00	11.70	0.04	3.28	0.05
	Final	3:01 PM		11.74			

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Q = Infiltration Rate (in inches per hour)

ΔH = Change in Height (Water Level) over the time interval


r = Test Hole (Borehole) Radius

Δt = Time Interval

H_{avg} = Average Head Height over the time interval

Where:

Grain Size Distribution

Sample Description

I-1 @ 13½'

Soil Classification

Gray Brown fine to coarse Sand, little fine Gravel, little Silt

Proposed Industrial Building

Beaumont, California

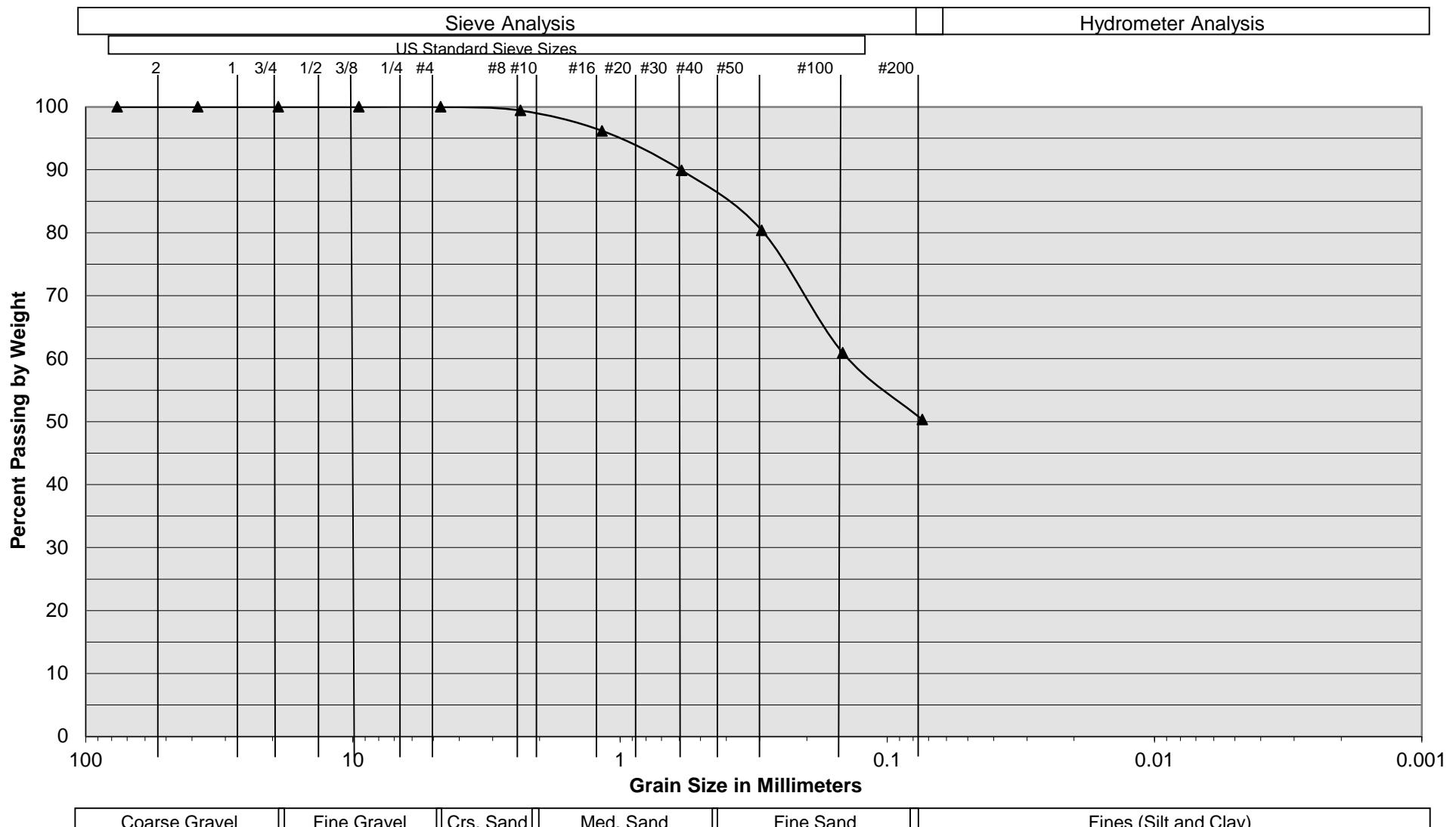

Project No. 21G254-2

PLATE C- 1

**SOUTHERN
CALIFORNIA
GEOTECHNICAL**
A California Corporation

Grain Size Distribution

Sample Description

I-2 @ 13½'

Soil Classification

Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay

Proposed Industrial Building

Beaumont, California

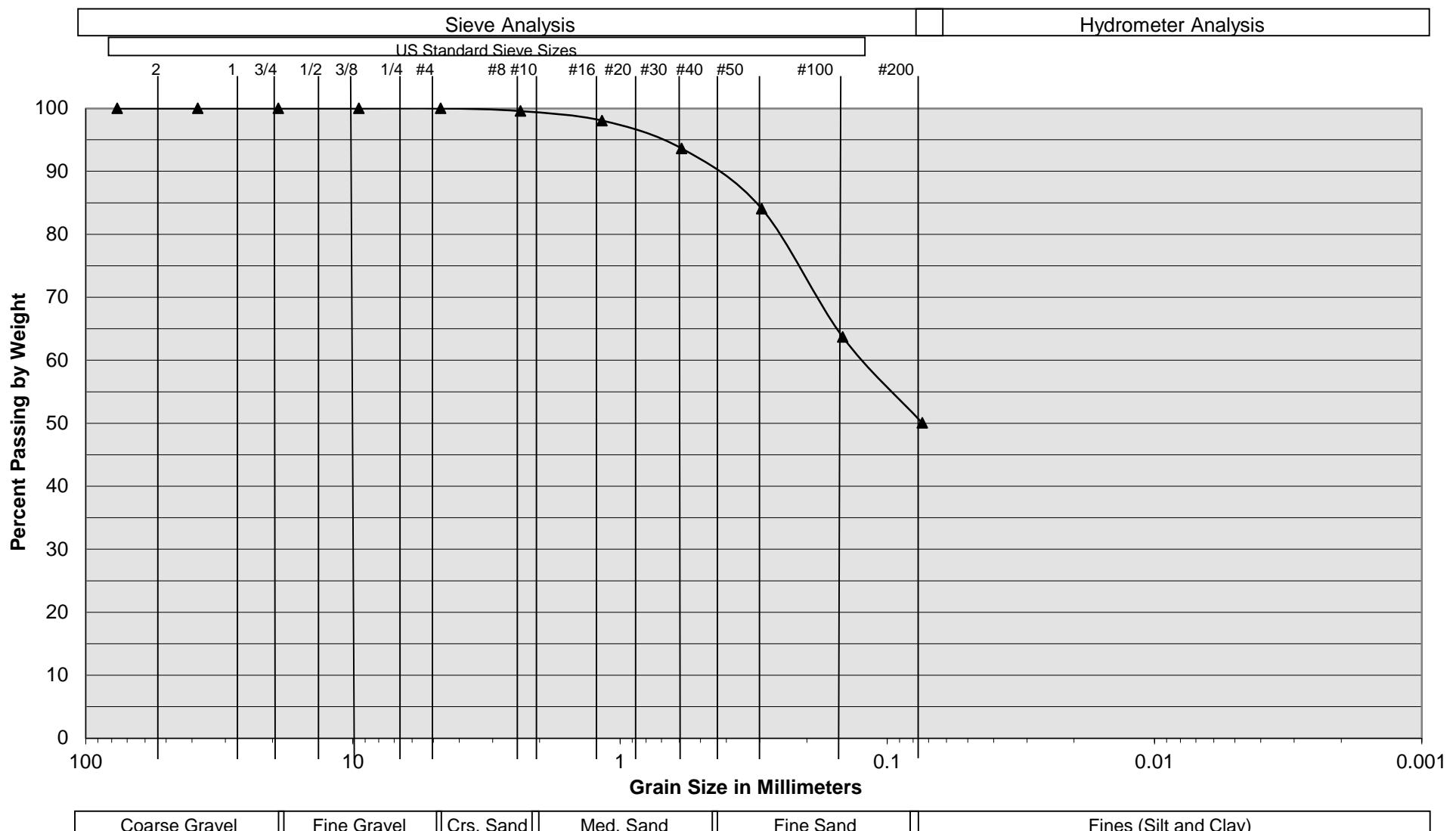

Project No. 21G254-2

PLATE C- 2

SOUTHERN
CALIFORNIA
GEOTECHNICAL
A California Corporation

Grain Size Distribution

Sample Description

I-3 @ 13½'

Soil Classification

Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay

Proposed Industrial Building

Beaumont, California

Project No. 21G254-2

PLATE C- 3

SOUTHERN
CALIFORNIA
GEOTECHNICAL
A California Corporation

Appendix 4: Historical Site Conditions

Historical Site Conditions

December 3, 2021

Mr. Neal Holdridge
Principal/Environmental Manager
TRAMMELL CROW SO. CAL. DEVELOPMENT, INC.
3501 Jamboree Road Suite 230
Newport Beach, California 92660

**Re: CITADEL Project No. 0096.1039.0
Environmentally Regulated Materials (ERMs) Survey Report
Asbestos, Lead, and Other ERMs Survey
Dowling Fruit Orchard Site
38021 CA-60
Beaumont, California 92223**

Dear Mr. Holdridge:

Enclosed please find Citadel EHS's Environmentally Regulated Materials (ERMs) Survey Report for the above-referenced location.

The ERMs survey was conducted for Trammell Crow So. Cal. Development, Inc. in accordance with a mutually agreed upon scope of work.

If after your review you have any questions or require additional information, please do not hesitate to telephone me at (818) 246-2707.

Sincerely,
CITADEL EHS

Jack Samuels
Digitally signed
by Jack Samuels
Date: 2021.12.03
10:41:40 -08'00'

Jack Samuels, CAC, CDPH
Associate Principal, Building Sciences

Enclosure

TRAMMELL CROW SO. CAL. DEVELOPMENT, INC.
3501 Jamboree Road Suite 230
Newport Beach, California 92660

Environmentally Regulated Materials Survey Report

December 3, 2021

Citadel Project Number 0096.1039.0

Asbestos, Lead and Other ERMs Survey
Dowling Fruit Orchard Site
38021 CA-60
Beaumont, California 92223

Table of Contents

1.0 INTRODUCTION	1
2.0 SURVEY METHODOLOGIES	1
FIELD METHODOLOGIES – ASBESTOS	1
FIELD METHODOLOGIES – LEAD CONTAINING MATERIALS (LCMS).....	2
FIELD METHODOLOGIES – POLYCHLORINATED BIPHENYLS (PCBS)/DI(2-ETHYLHEXL) PHTHALATE (DEHP)	2
FIELD METHODOLOGIES – UNIVERSAL/ELECTRONIC/RADIOACTIVE WASTES	3
FIELD METHODOLOGIES – OZONE DEPLETING SUBSTANCES (ODS)	3
3.0 RESULTS	3
ASBESTOS	3
LEAD-CONTAINING MATERIALS.....	8
POLYCHLORINATED BIPHENYLS (PCBS)/DI(2-ETHYLHEXL) PHTHALATE (DEHP) VISUAL INSPECTION	9
UNIVERSAL/ELECTRONIC/RADIOACTIVE WASTES.....	11
OZONE DEPLETING SUBSTANCES.....	12
4.0 CONCLUSIONS AND RECOMMENDATIONS	13
ASBESTOS	13
LEAD-CONTAINING MATERIALS.....	14
POLYCHLORINATED BIPHENYL (PCBS) AND DIETHYLHEXL PHTHALATE (DEHP)	15
UNIVERSAL/ELECTRONIC/RADIOACTIVE WASTES.....	16
OZONE DEPLETING SUBSTANCES.....	16
5.0 SURVEY LIMITATIONS	16
6.0 DISCLAIMER	17
7.0 SIGNATURES.....	18

APPENDICES

- A** Project Team Certifications
- B** Site Plan and Drawings with Bulk Sample Locations
- C** Asbestos Laboratory Reports
- D** Table 3.0 - Lead XRF SA Results
- E** Table 3.1 – Lead XRF Results – LBP (Positive)
- F** Table 3.2 – LCP – (≥ 0.01 mg/cm² and < 0.7 mg/cm²)

1.0 INTRODUCTION

Citadel EHS (Citadel) was contracted by Trammell Crow So. Cal. Development, Inc. (Client) to conduct an Environmentally Regulated Materials (ERMs) survey of the buildings located on the Dowling Fruit Orchard Site located at 38021 CA-60 in Beaumont, California (Survey Area). Citadel identified 10 structures on the site. The Site Plans in Appendix **B** identify the structures by number.

Inspection for the following items was included in the scope of work.

- ❖ Asbestos-containing materials/asbestos-containing construction materials (ACMs/ACCMs);
- ❖ Representative lead-containing coatings and finishes, herein “lead-containing materials (LCMs);
- ❖ Suspect light ballasts filled with Polychlorinated Biphenyl (PCBs) and Diethylhexyl Phthalate (DEHP) dielectric fluids;
- ❖ Universal/electronic/radioactive wastes consisting of fluorescent light tubes, mercury ampoules in pneumatic controls, switchboards, gauges, batteries, and thermostats, electronic waste {e.g., cathode ray tube (CRT) devices (including televisions and computer monitors, etc.)}, and radioactive materials (smoke detectors and exit signage); and,
- ❖ Ozone Depleting Substances (ODS) {Chlorofluorocarbons (CFCs) and Hydrochlorofluorocarbons (HCFC)} such as refrigerants related to roof-top cooling units}.

The survey was conducted on November 17th, 18th, and 19th, 2021, by the Citadel staff listed in the table below. All work was conducted under the general supervision of, and the report was prepared by Mr. Jack S. Samuels. Mr. Samuels is a Division of Occupational Safety and Health (DOSH) Certified Asbestos Consultant (CAC) (No. 92-0475) and California Department of Public Health (CDPH) Lead Related Construction Inspector/Assessor (LRCIA) (No. LRC-00008171). The report was reviewed by Mr. Josh LaPrease. Mr. LaPrease is a DOSH CAC (No. 19-6681) and CDPH LRCIA (No. 00000890). Citadel's project team certifications can be found in Appendix **B**.

Staff Information

NAME (FIELD WORK WAS PERFORMED BY:)	CERTIFICATION DESCRIPTION
Nelson Ortiz	CSST No. 15-5586, LRCST No. LRC-00008185
Brian Weltman	CSST No. 17-5942, LRCST No. LRC-00002502

- CAC=California Division of Occupational Safety and Health (DOSH) Certified Asbestos Consultant
- CSST=DOSH Certified Site Surveillance Technician
- LRCIA=California Department of Public Health (CDPH) Lead Related Construction Inspector/Assessor
- LRCPM=CDPH LRC Project Monitor
- LRCST=CDPH LRC Sampling Technician

2.0 SURVEY METHODOLOGIES

FIELD METHODOLOGIES – ASBESTOS

Citadel began the field survey by visually inspecting the Survey Area to categorize suspect ACMs/ACCMs to be impacted by the project. Suspect ACMs/ACCMs were categorized by homogeneous areas (HAs). HAs consist of groupings of materials that have uniform appearances, textures, and installation dates. Following the walk through, representative bulk samples of suspect ACMs/ACCMs were then collected. As the samples were collected, the locations of the

HAs and samples were marked on field sketches. Locations of visible debris, if observed, were also noted.

ACMs/ACCMs Condition Assessment

Materials were assessed to be in good, damaged, or significantly damaged condition based on their condition at the time of the survey:

- ❖ **Good Condition** - No or very limited visible damage or deterioration was observed.
- ❖ **Damaged Condition** - Crumbling, blistering, water damage, gouges, or other damage was observed over less than 25% of the materials (one-tenth if evenly distributed); or accumulation of suspect powder, dust or debris below the material was observed.
- ❖ **Significantly Damaged Condition** - Crumbling, blistering, water damage, gouges, or other damage was observed over greater than 25% of the material (one-tenth if evenly distributed); material is delaminating or showing adhesive failure; or accumulation of suspect powder, dust or debris below the material was observed.

FIELD METHODOLOGIES – LEAD CONTAINING MATERIALS (LCMS)

A limited lead inspection/screening was conducted to test predominant surface paints/coatings on surface area components, such as walls, doors, floors, frames, etc. for lead-based paints and lead-containing paints. Citadel utilized X-Ray Fluorescence Spectrum Analysis (XRF-SA) to test suspect paints and coatings. Assays (tests) were taken from painted/coated surfaces as necessary.

The XRF irradiates the paint on a given surface causing the lead in the paint, if present, to emit a characteristic frequency of x-ray radiation. The intensity of this radiation is measured by the detector and related to the amount of lead in the paint. The type of XRF used in this survey was a Niton XLP-303A X-Ray Fluorescence Spectrum Analyzer. The XRF analyzer provides an in-the-field determination of suspect LBP without the need to collect substantial numbers of paint chip samples for subsequent laboratory analysis.

In order to obtain a reading, the XRF was placed with the face of the instrument flush against the surface to be tested. It was then held in place for the duration of the sample, which was determined by the instrument. At the conclusion of the sample time, the lead concentration was displayed on the device's readout screen. The values, expressed in milligrams per square centimeter (mg/cm²), are stored in the device and can be recalled by the inspector upon downloading into computer software. The Niton is sensitive to 0.01 milligrams per square centimeter (mg/cm²) of lead.

The instrument, equipped with a sealed radioactive source, was operated by certified personnel in accordance with manufacturer requirements and applicable regulations. The operator calibrated the XRF-SA pursuant to the manufacturer's specifications and regularly verified XRF-SA readings against pre-determined lead samples produced by the National Institute of Standards and Testing (NIST). These quality control measures produced a 95% confidence level that the XRF-SA readings accurately reflected the actual level of lead in the tested surfaces.

FIELD METHODOLOGIES – POLYCHLORINATED BIPHENYLS (PCBS)/DI(2-ETHYLHEXYL) PHTHALATE (DEHP)

The inspection for polychlorinated biphenyls (PCBs) and di(2-ethylhexyl) phthalate (DEHP) consisted of a visual inspection of the type(s) of equipment found in the Survey Area that commonly use dielectric fluids. Items such as fluorescent lighting ballasts were visually inspected to determine if: (1) they were "wet" ballasts (contain dielectric fluids) as opposed to magnetic, and (2) if the

ballasts were labeled "No PCBs" or "Does Not Contain PCBs." Wet ballasts were assumed to contain PCBs or DEHP unless so labeled. As required by Federal and State law, all ballasts manufactured post-1978 are required to be labeled with the aforementioned language. This portion of the survey was not intended to be comprehensive, but rather sought to identify potential hazards.

FIELD METHODOLOGIES – UNIVERSAL/ELECTRONIC/RADIOACTIVE WASTES

The inspection for Universal/Electronic/Radioactive Wastes consisted of visual inspection of the Survey Area to determine if Universal/Electronic/Radioactive Wastes were present. This portion of the survey was not intended to be comprehensive, but rather sought to identify potential hazards.

FIELD METHODOLOGIES – OZONE DEPLETING SUBSTANCES (ODS)

Under Title VI of the Clean Air Act (CAA), US Environmental Protection Agency (USEPA's) Stratospheric Protection Division is responsible for several programs that protect the stratospheric ozone layer. Several types of refrigerants and propellants have been defined as Ozone Depleting Substances (ODS) by the EPA. These include, but are not limited to, Chlorofluorocarbons (CFCs) and Hydrochlorofluorocarbons (HCFC), as well as Halon, Sulfur Dioxide (SO₂), and Ammonia (NH₃).

Citadel visually inspected the Survey Area for the following suspect ODS-containing equipment and appliances: refrigerators, freezers, dehumidifiers, window-mounted air-cooling units, and forced-air furnaces with cooling units, as well as propellants in fire suppression equipment. This portion of the survey was not intended to be comprehensive, but rather sought to identify potential hazards.

3.0 RESULTS

ASBESTOS

Asbestos Definitions

Asbestos-Containing Materials (ACM): The EPA's Asbestos NESHAPs and the South Coast Air Quality Management District (SCAQMD), the local air pollution control district, define an asbestos-containing material as any material that contains a concentration of asbestos of greater than one percent (>1.0%) by area as determined by PLM (Federal Register, Volume 59, No. 146, August 1, 1994, P. 38970-38971). NESHAPs and SCAQMD Rule 1403 further segregate asbestos-containing materials into **Regulated Asbestos-Containing Materials (RACM)**, **Category I Non-Friable Materials**, and **Category II Non-Friable Materials**, which are defined as follows:

- ❖ **Regulated Asbestos-Containing Materials (RACM)/Asbestos-Containing Materials (ACM):** Includes all friable asbestos materials, Category I/Class I Nonfriable ACM that have become friable or will become friable, and Category II/Class II Nonfriable ACM that have a high probability of being crumbled, pulverized, or reduced to powder by the forces expected to act on the materials in the course of renovation or demolition.
- ❖ **Category I Nonfriable ACM/Class I Nonfriable ACM:** Includes asbestos-containing packings, gaskets, resilient floor covering, and asphalt roofing products that when dry can be crumbled, pulverized, or reduced to powder by hand pressure in the course of renovation and demolition activities.
- ❖ **Category II Nonfriable ACM/Class II Nonfriable ACM:** Includes all non-friable materials, excluding Category I/Class I Nonfriable ACM that when dry cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Asbestos-Containing Construction Materials (ACCM): The California Department of Occupational Safety and Health (Cal/OSHA) further defines an asbestos-containing construction material (ACCM) as a material that contains greater than one-tenth of one percent (>0.1%) asbestos.

Presumed Asbestos-Containing Material (PACM) means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos. PACM may also be used in this report to identify additional suspect ACM that was not sampled but should be assumed to be ACM.

Asbestos Results

During the survey a total of 144 asbestos bulk samples were collected and submitted for analysis. The samples were layered in some cases yielding 241 samples for analysis. The bulk samples were submitted to the following laboratory for analysis:

LA Testing
 520 Mission Street
 South Pasadena, California 91030
 (323) 254-9960
 CA NVLAP Code 200232-0, CA ELAP 2283

The samples were analyzed by polarized light microscopy (PLM) for asbestos content using EPA 600/R-93/116 Method. The EPA method is a semi-quantitative procedure with a detection limit of one-tenth to one percent (0.10 – 1.0%) by area, dependent upon the material being analyzed. If indicated, select samples were submitted for more objective analysis following EPA 600/R-93/116 Method Point Count procedures (1,000 points). The Point Count procedure is used to increase the amount of sample viewed under PLM so that the results are statistically enhanced, resulting in a generally more accurate analysis.

Table A.1 includes the findings of the sampling performed by Citadel.

Table A.1 Asbestos Bulk Sample Analytical Results

CITADEL HA/SAMPLE ID No.	MATERIAL DESCRIPTION	MATERIAL LOCATION	ESTIMATED QUANTITY	SAMPLE RESULTS
Building 1				
WPF1-034, 035, 036	Wall Plaster, White, Smooth	Throughout	N/A	NAD
CP1-037, 038, 038	Ceiling Plaster, White, Smooth	Room 5	N/A	NAD
CP2-040, 041, 042	Ceiling Plaster, White, Troweled	Room 1	N/A	NAD
WPF2-043, 044, 045	Wall Plaster, White, Troweled	Room 1	N/A	NAD
MISC1-046, 047, 048	Residual Mastic, Black	Under Display Racks, Throughout	N/A	NAD
CSR1-049, 050, 051	Drywall and Joint Compound Ceiling, White	Room 4	N/A	NAD

Table A.1 Asbestos Bulk Sample Analytical Results

CITADEL HA/SAMPLE ID No.	MATERIAL DESCRIPTION	MATERIAL LOCATION	ESTIMATED QUANTITY	SAMPLE RESULTS
RFM1-052, 053, 054	Rolled Roof Membrane	Roof	N/A	NAD
RPM1-055, 056, 057, 058	Rolled Roof Penetration Mastic, Black/Grey	Roof	N/A	NAD
MISC2-059, 060, 061	Rolled Roof Seam Mastic, Black/Grey	Roof	N/A	NAD
RFM2-062, 063, 064	Shingled Roof Membrane, Black/Grey	Roof	N/A	NAD
MISC3-065, 066, 067	Mastic at Brace, Black/Silver	Roof	20 SF	3-5% Chrysotile
MISC4-068, 069, 070	Mastic at HVAC Stand, Black	Roof	N/A	NAD
ES1-071, 072, 073, 074, 075	Exterior Stucco, Grey	Exterior	N/A	NAD
PB1-076, 077, 078	Barrier Paper, Brown	Exterior Under Stucco	N/A	NAD
MISC5-131, 132, 133	Concrete, Grey	Interior	N/A	NAD
Building 2				
WPF1-001, 002, 003	Plaster Walls, White, Sand Texture	Throughout	N/A	<0.1% Chrysotile (PCV)
VFT1-004, 005, 006	12"x12" Vinyl Floor Tiles, Wood Pattern, and Mastic	Room 1	N/A	NAD
CP1-007, 008, 009	Plaster Ceiling, White, Smooth	Throughout	N/A	NAD
FCM1-010, 011, 012	Carpet Mastic, Yellow	Rooms 1 and 2	N/A	NAD
MISC1-013, 014, 015	Moisture Barrier Paper, Black	Exterior Under Stucco	N/A	NAD
RPM1-016, 017, 018	Roof Mastic, Black	Roof	300 SF	8-10% Chrysotile
RPM2-019, 020, 021	Roof Mastic, Silver	Roof	240 SF	4-8% Chrysotile
ES1-022, 023, 024	Exterior Stucco, Grey, Sand Finish	Exterior	N/A	NAD
ES2-025, 026, 027	Exterior Stucco, Grey, Trowel Finish	Exterior East Wall	N/A	NAD
ES3-028, 029, 030	Exterior Stucco, Grey, Smooth Finish	Exterior	N/A	NAD
RPM3-031, 032, 033	Roof Mastic, White	Roof	200 SF	8% Chrysotile

Table A.1 Asbestos Bulk Sample Analytical Results

CITADEL HA/SAMPLE ID No.	MATERIAL DESCRIPTION	MATERIAL LOCATION	ESTIMATED QUANTITY	SAMPLE RESULTS
MISC2-128, 129, 130	Concrete, Grey	Interior	N/A	NAD
Building 3				
No suspect asbestos-containing materials were identified in Building 3				
Building 4				
9VFT1-079, 080, 081	9"x9" Vinyl Floor Tile, Beige w/Black Mastic	Throughout	600 SF	FT: 5-6% Chrysotile M: NAD
WPF1-082, 083, 084	Wall Plaster, White/Grey, Smooth	Throughout	N/A	NAD
WSR1-085, 086, 087	Drywall and Joint Compound, White	Room 3	N/A	NAD
CP1-088, 089, 090	Ceiling Plaster w/Button Board, White/Pink	Throughout	N/A	NAD
RFM1-091, 092, 093	Shingle Roof, Black/Grey, Multi-Layer	Roof	N/A	NAD
RPM1-094, 095, 096	Roof Mastic, Black	Roof	10 SF	8-10% Chrysotile
MISC1-097	Transite Vent Pipe, Grey	Roof	14 LF	15% Chrysotile 2% Crocidolite
WP1-098, 099, 100	Window Putty, White/Grey	Exterior	N/A	NAD
ES1-101, 102, 103	Exterior Stucco, Grey	Exterior	N/A	NAD
12VFT1-139, 140, 141	12"x12" Vinyl Floor Tile, Wood Pattern, w/Mastic	Room 5	N/A	NAD
MISC2-142, 143, 144	Concrete, Grey	Interior	N/A	NAD
Building 5				
WSR1-104, 105, 106	Drywall and Joint Compound, White	Throughout	N/A	NAD
9VFT1-107, 108, 109	9"x9" Vinyl Floor Tile, Brown w/Streaks, w/Black Mastic	Throughout	N/A	NAD
RFM1-110, 111, 112	Rolled Roofing Material, Grey/Black	Roof	N/A	NAD
MISC1-113, 114, 115	Roof Seam Mastic, Black	Roof	N/A	NAD

Table A.1 Asbestos Bulk Sample Analytical Results

CITADEL HA/SAMPLE ID No.	MATERIAL DESCRIPTION	MATERIAL LOCATION	ESTIMATED QUANTITY	SAMPLE RESULTS
MISC2-116, 117, 118	Concrete Steps, Grey	Exterior	N/A	NAD
Building 6				
WSR1-119, 120, 121	Drywall and Joint Compound, Wall, White	Throughout	N/A	NAD
CSR1-122, 123, 124	Drywall and Joint Compound Ceiling, White	Throughout	N/A	NAD
BP1-125, 126, 127	Barrier Paper, Brown	Throughout	N/A	NAD
Building 7				
No suspect asbestos-containing materials were identified in Building 7				
Building 8				
No suspect asbestos-containing materials were identified in Building 8				
Building 9				
No suspect asbestos-containing materials were identified in Building 9				
Building 10				
No suspect asbestos-containing materials were identified in Building 10				
Site				
MISC1-134, 135, 136, 137, 138	Concrete, Grey	Throughout	N/A	NAD

NAD= No Asbestos Detected

N/A=Not Applicable

PACM=Presumed Asbestos-Containing Material

SF= Square Feet, ft²

LF=Linear Feet, ft

EA=Each

PCV=Point Count Verified

NQ=Not Quantified

FT=Floor Tile

M=Mastic

The drawings with bulk sample locations can be found in Appendix **B**. Bulk sample laboratory results may be found in Appendix **C**.

LEAD-CONTAINING MATERIALS

Lead Definitions

- ❖ **Lead Containing Paint (LCP)** - A lead-containing paint is a paint or coating that contains any detectable concentration of lead.
- ❖ **Lead Based Paint (LBP)** - The Los Angeles County Department of Health and Human Services, Health & Safety Code, Chapter 11 defines LBP as paint containing lead greater than or equal to 0.7 mg/cm² ($>0.7 \text{ mg/cm}^2$), or $\geq 5,000 \text{ ppm}$ or $> 0.5\%$ by weight. This site is in Riverside County but this level was used to determine if a paint was LBP.
- ❖ **Lead Containing Material (LCM)** - A lead-containing material may consist of identified lead-containing paint (LCP), lead-based paint (LBP), or other materials such as lead sheeting, ceramic tile glazing, etc., or presumed LCMS.
- ❖ **Presumed Lead-Based Paint (PLBP)** - Title 17, California Code of Regulations, Division 1, Chapter 8 defines as paint or surface coating affixed to a component in or on a structure constructed prior to January 1, 1978 as a presumed lead-based paint unless it has been tested and found to contain an amount of lead less than one milligram per square centimeter 1.0 mg/cm² ($<1.0 \text{ mg/cm}^2$) or less than 0.5% ($< 0.5\%$) by weight.

A total of 184 assays (tests) (excluding "Null" and "Calibration Readings"), using the XRF-SA were conducted during the survey. Of the 184 assays collected, 14 were found to contain LBP (i.e., $\geq 0.7 \text{ mg/cm}^2$).

Table B.1 below summarizes the materials identified and sampled to be **Lead-Based Paints (LBP)** (detectable quantities of lead in concentrations of $\geq 5,000 \text{ ppm}$ or $\geq 0.7 \text{ mg/cm}^2$) in the Survey Area:

TABLE B.1

COMPONENT	SUBSTRATE	COLOR(S)	SAMPLE LOCATION(S)
Building 1			
None Identified	N/A	N/A	N/A
Building 2			
None Identified	N/A	N/A	N/A
Building 3			
No suspect paint was identified in Building 3			
Building 4			
Door Frame	Wood	White	Room 2
Window	Wood	White	Room 2
Window Frame	Wood	Yellow	Room 2
Door	Wood	White	Room 3
Door Frame	Wood	White	Room 3

COMPONENT	SUBSTRATE	COLOR(S)	SAMPLE LOCATION(S)
Door	Wood	Yellow	Room 4
Door Frame	Wood	Yellow	Room 4
Door Frame	Wood	Yellow	Room 6
Door Frame	Wood	Yellow	Room 5
Door	Wood	Yellow	Room 5
Tub	Metal	White	Room 5
Building 5			
None Identified	N/A	N/A	N/A
Building 6			
None Identified	N/A	N/A	N/A
Building 7			
No suspect paint was identified in Building 7			
Building 8			
No suspect paint was identified in Building 8			
Building 9			
No suspect paint was identified in Building 9			
Building 10			
No suspect paint was identified in Building 10			
Site			
Striping	Concrete	Yellow	Parking Area

Additionally, Lead-Containing Paints (LCPs) were identified in the Survey Area, and are identified in Appendix F, Table 3.2.

XRF-SA results may be found in Appendix D, Table 3.0 – XRF-SA Results; Appendix E, Table 3.1 – Lead-Based Paint (LBP) XRF-SA results; and Appendix F, Table 3.2 – Lead-Containing Paint (LCP) results (i.e., $\geq 0.01 \text{ mg/cm}^2$ and $< 0.7 \text{ mg/cm}^2$).

POLYCHLORINATED BIPHENYLS (PCBs)/DI(2-ETHYLHEXYL) PHTHALATE (DEHP) VISUAL INSPECTION

Fluorescent light ballasts with wet (liquid) capacitors utilize dielectric fluids that may contain PCBs or DEHP dielectric fluids.

PCBs are regulated under 40 CFR Part 761 as part of the Toxic Substances Control Act (TSCA). The PCB regulations and requirements apply to both PCB waste materials and PCBs still in use. States and the Federal Government regulate the use, storage, and disposal of equipment containing PCBs, depending upon the concentrations of PCBs present.

DEHP is regulated under the Resource Conservation and Recovery Act (RCRA), "Superfund", Superfund Amendments, Clean Water Act, Safe Drinking Water Act, OSHA, and by the Food and Drug Administration.

PCB and DEHP Definitions

Environmental Protection Agency: 40 CFR Part 761 Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions has established the following threshold limits for liquid and non-liquid materials containing PCBs:

- ❖ **PCB-Contaminated Electrical Equipment** is defined as a liquid material (homogenous flowable material containing no more than 0.5% by weight non-dissolved material) that contains concentrations of PCBs at ≥ 50 ppm and < 500 ppm, or where insufficient liquid is available for analysis, a non-porous surface having a PCB concentration of > 10 $\mu\text{g}/100\text{ cm}^2$ but < 100 $\mu\text{g}/100\text{ cm}^2$ as measured by a standard wipe test. Electrical Equipment includes, but is not limited to, transformers, capacitors, circuit breakers, re-closers, voltage regulators, switches, electromagnets, and cable.
- ❖ **PCB-Contaminated** is defined as a non-liquid material (does not flow at room temperature of 25°C or 77°F) that contains concentrations of PCBs at ≥ 50 PPM but < 500 PPM; a liquid material that contains concentrations of PCBs at ≥ 50 ppm but < 500 ppm, or where insufficient liquid is available for analysis, a non-porous surface having a PCB concentration of > 10 $\mu\text{g}/100\text{ cm}^2$ but < 100 $\mu\text{g}/100\text{ cm}^2$ as measured by a standard wipe test.
- ❖ **PCB Capacitor** is defined as any capacitor that contains concentrations of PCBs at > 500 ppm.
- ❖ **PCB Transformer** is defined as any transformer that contains concentrations of PCBs < 500 ppm.
- ❖ **PCB Bulk Product Waste** is defined as waste derived from manufactured products containing PCBs in a non-liquid state, at any concentration where at the time of designation for disposal the concentration of PCBs was ≥ 50 ppm. Fluorescent light ballasts with labels that do not contain the words "No PCBs" or "Does Not Contain PCBs" are considered a PCB Bulk Product Waste.
- ❖ **Di(2-ethylhexyl) phthalate** is a colorless, odorless, toxic liquid used in dielectric fluids from 1979 to 1991.

State of California-Department of Toxic Substances Control (DTSC): The DTSC enforces Title 22 of the California Code of Regulation, Chapter 11, Article 3, § 66261.20-24 which has established the following threshold limits for PCBs in solid waste material:

- ❖ Total Threshold Limit Concentration (TTLC) of ≥ 50 ppm.
- ❖ Soluble Threshold Limit Concentration (STLC) of ≥ 5 mg/L.

Table C.1 below summarize the **PCB** and **DEHP** containing equipment identified in the survey area, along with the locations and estimated quantities of each material:

TABLE C.1

MATERIAL TYPE	LOCATION	QUANTITY
Building 1		
Light Fixture Ballasts	Throughout	208
Building 2		
Light Fixture Ballasts	Throughout	20

MATERIAL TYPE	LOCATION	QUANTITY
Building 3		
No PCB-containing items were identified in Building 3		
Building 4		
No PCB-containing items were identified in Building 4		
Building 5		
Light Fixture Ballasts	Throughout	1
Building 6		
No PCB-containing items were identified in Building 6		
Building 7		
Light Fixture Ballasts	Throughout	3
Building 8		
No PCB-containing items were identified in Building 8		
Building 9		
No PCB-containing items were identified in Building 9		
Building 10		
No PCB-containing items were identified in Building 10		

Citadel performed bulk sampling of suspect PCB-containing window putty on the site. The results of this sampling are presented under separate cover.

UNIVERSAL/ELECTRONIC/RADIOACTIVE WASTES

Universal Wastes

The *Universal Waste Rule* found in the California Code of Regulations (CCR), Title 22, division 4.5, Chapter 23, regulates the disposal of the following items such as:

- ❖ Mercury thermostats (ampoules);
- ❖ Batteries, including rechargeable nickel-cadmium batteries, silver button batteries, mercury batteries, small sealed lead acid batteries (burglar alarm and emergency light batteries), most alkaline batteries, carbon zinc batteries, and any other batteries that exhibit a characteristic of a hazardous waste (§66261.20 through §66261.24);
- ❖ Lamps, including fluorescent tubes, high intensity discharge lamps, sodium vapor lamps, and any other lamps that exhibit a characteristic of a hazardous waste;
- ❖ Non-empty aerosol cans;
- ❖ Mercury switches, including thermostats and tip switches in portable heaters, washing machine out-of-balance switches, silent wall switches, and other mercury-containing switches and products containing them;
- ❖ Mercury thermometers;
- ❖ Mercury pressure or vacuum gauges, including U tube manometers, barometers, and sphygmomanometers (blood pressure meters.);
- ❖ Medical devices containing mercury including, dilators and weighted tubing;
- ❖ Mercury-containing rubber flooring, including older gymnasium floors that were poured in place to form indoor tracks and gymnastic areas;
- ❖ Mercury gas flow regulators managed exclusively by natural gas utilities;
- ❖ Counterweights and dampers, including devices that use pouches of high density mercury to dampen shaking on hunting bows and snow skis or to absorb recoil on shotguns;
- ❖ Consumer electronic devices, including cell phones, game consoles, and computers; and

- ❖ Mercury gauges, including vacuum and pressure gauges, including blood pressure gauges, barometers, and manometers.

Table D.1 below summarize **universal/electronic/radioactive** wastes identified or assumed to be present in the Survey Area, along with the locations and estimated quantities of each material:

TABLE D.1

MATERIAL TYPE	LOCATION	QUANTITY
Building 1		
Fluorescent Light Tubes	Throughout	104
Building 2		
Fluorescent Light Tubes	Throughout	40
Light Bulbs (Compact Fluorescent)	Throughout	2
Exterior Lights	Exterior	2
Thermostats	Throughout	1
Smoke Detectors	Throughout	2
Building 3		
No universal waste was identified in Building 3		
Building 4		
Light Bulbs (Compact Fluorescent)	Throughout	9
Thermostats	Throughout	1
Building 5		
Fluorescent Light Tubes	Throughout	2
Light Bulbs (Compact Fluorescent)	Throughout	4
Exit Lights with Batteries	Throughout	2
Thermostats	Throughout	1
Smoke Detectors	Throughout	1
Building 6		
Light Bulb	Throughout	1
Building 7		
Fluorescent Light Tubes	Throughout	6
Building 8		
No universal waste was identified in Building 8		
Building 9		
No universal waste was identified in Building 9		
Building 10		
No universal waste was identified in Building 10		

OZONE DEPLETING SUBSTANCES

A chlorofluorocarbon (CFC) is an organic compound that contains carbon, chlorine, and fluorine, produced as a volatile derivative of methane and ethane. A common subclass is the hydrochlorofluorocarbons (HCFCs), which contain hydrogen, as well. They are also commonly known by the DuPont trade name Freon. The most common representative is dichlorodifluoromethane (R-12 or Freon-12). Many CFCs have been widely used as refrigerants, propellants (in aerosol applications), and solvents. The compounds are suspected of contributing to ozone depletion.

Table E.1 below summarize the **Ozone Depleting Substances** identified or assumed to be present in the Survey Area, along with the locations and estimated quantities of each material:

TABLE E.1

MATERIAL TYPE	LOCATION	QUANTITY
Building 1		
HVAC Units	Roof	2
Wall Mounted A/C Unit	Throughout	1

MATERIAL TYPE	LOCATION	QUANTITY
Freezers	Storage	2
Building 2		
HVAC Wall Unit	Throughout	1
Building 3		
No ozone depleting substances were identified in Building 3		
Building 4		
Wall Mounted A/C Unit	Throughout	1
Building 5		
HVAC Unit	Roof	1
Building 6		
No ozone depleting substances were identified in Building 6		
Building 7		
No ozone depleting substances were identified in Building 7		
Building 8		
No ozone depleting substances were identified in Building 8		
Building 9		
No ozone depleting substances were identified in Building 9		
Building 10		
No ozone depleting substances were identified in Building 10		

4.0 CONCLUSIONS AND RECOMMENDATIONS

ASBESTOS

The results of the survey indicate that ACMs are present in the Survey Area.

If suspect materials are identified during demolition activities that were not specifically sampled, they must be assumed to be ACM until they can be sampled.

All asbestos removal operations shall be performed by a Cal/OSHA-DOSH-registered and California-licensed asbestos contractor. All disturbances of asbestos-containing materials, and/or abatement operations, should be performed under the surveillance of a third-party Cal/OSHA Certified Asbestos Consultant retained by the Client.

All disturbances of asbestos-containing materials, and/or abatement operations, must be performed in accordance with the Cal/OSHA requirements set forth in 8 CCR 1529. Given the location of the subject facility, all asbestos abatement must also be performed in accordance with South Coast Air Quality Management District (SCAQMD) requirements set forth in Rule 1403.

Finally, notification of the presence and location of asbestos-containing materials shall be made to all employees and vendors who work within the subject structure, in accordance with California Health and Safety Code, Section 25915, et seq. (also known as Connolley Notification Bills).

Citadel recommends that all undamaged ACMs, ACCMs, and PACMs not to be disturbed as part of this project and scheduled to remain be managed in place in accordance with the EPA's guidance document [Managing Asbestos In-Place](#) (a.k.a., the Green Book). The Green Book can be obtained by calling the Toxic Substance Control Act Hotline at (202) 554-1404. Citadel also recommends that the materials be managed in place in accordance with the Client's Operations and Maintenance (O & M program) addressing building cleaning, maintenance, renovation, and general operation procedures to minimize exposure to asbestos.

LEAD-CONTAINING MATERIALS

Lead-Containing Materials/Lead-Based Paints (LCM/LBP)

This survey revealed that building components coated with LBP and LCP were identified within the Survey Area.

At present, there are no explicit state or federal regulations requiring mandatory lead removal prior to disturbance or demolition of structures with identified lead materials. However, there are applicable Cal/OSHA worker protection and training requirements, Cal/EPA waste disposal requirements, CDPH requirements for public and residential buildings, and SB 460 lead hazard regulations that apply to lead-related construction activities and their associated wastes

The following is a brief discussion and summary of applicable regulatory requirements:

- ❖ **Cal/OSHA:** 8 CCR 1532.1 governs occupational exposure to lead. This regulation requires that prior to initiation of certain activities, referred to as "trigger tasks", workers must be trained, medically evaluated, and properly fitted with respiratory protection, and protective clothing until statistically reliable personal eight-hour Time Weighted Average (TWA) results indicate lead exposure levels below the Personal Exposure Limit (PEL) for each unique task which disturbs lead-based and lead-containing coatings. This process is known as a Negative Exposure Assessment (NEA). If the result of the exposure assessment is above the Action Level (AL), additional monitoring is required, and if the result is above the PEL, additional exposure monitoring, worker protection (including respirator protection and PPE), training and medical requirements apply. At a minimum, contractors performing any lead in construction work shall have a hand washing station and HEPA vacuum present on the job site.
- ❖ "Trigger tasks" are tasks that are assumed to exceed the PEL pending an exposure assessment and encompass the majority of construction activities that disturb surface coatings. Examples of "trigger tasks" range from manual paint scraping as a lower expected exposure up to hot work and abrasive blasting as the highest expected exposures, and include any non-listed task that the employer determines may potentially expose employees to lead levels above the AL.

NOTE: "OSHA does not consider any method that relies solely on the analysis of bulk materials or surface content of lead (or other toxic material) to be acceptable for safely predicting employee exposure to airborne contaminants. Without air monitoring results or without the benefit of historical or objective data (including air sampling, which clearly demonstrates that the employee cannot be exposed above the AL during any process, operation, or activity) the analysis of bulk or surface samples cannot be used to determine employee exposure." OSHA Standard Interpretation dated 5/8/2000.

Furthermore, Cal/OSHA states that these rules apply to "any detectable concentration of lead", without a specified detection level. Due to the Consumer Product Safety Commission currently allowing paint to contain up to 600 parts per million (ppm) of lead for residential consumption and no limits for industrial or commercial coatings, the variation of lead content due to aging and weathering, and the variation of detection limits associated with both paint chip and XRF analysis, all coated surfaces should be treated as potentially containing lead, unless bulk sample analysis indicates that no lead was detected. Positive analytical results can be utilized to indicate that detectable lead is present, but negative XRF results cannot be interpreted as conclusively demonstrating the absence of lead.

Analytical data can be helpful in evaluation of lead-related environmental risks in general but cannot be used to calculate worker exposures and are not a substitute for employee exposure monitoring. As a result of the above, any employee that works around potential lead-based or

lead-containing coatings should have hazard communication training (lead awareness) training and personal exposure air monitoring if they will potentially disturb such coatings. Significant additional certification, notification, and work practices are required for materials found to be "lead-based" or where the operation or process involved results in airborne lead exposures exceeding the PEL.

- ❖ Any welding, cutting, or heating of metal surfaces containing surface coatings should be conducted in accordance with 29 CFR 1926.354 and 8 CCR 1537. These regulations require surfaces covered with toxic preservatives, and in enclosed areas, be stripped of all toxic coatings for a distance of at least 4 inches, in all directions, from the area of heat application prior to the initiation of such heat application. There are some provisions for conducting hot work on coated surfaces, but only with required respiratory protection such as properly selected supplied air respirators.
- ❖ **Cal/EPA** through the Division of Toxic Substance Control (DTSC) regulates disposal of lead hazardous waste (22 CCR Division 4.5, Minimum Standards for Management of Hazardous and Extremely Hazardous Wastes). It is the responsibility of the waste generator to evaluate all waste streams produced and ensure that any resulting wastes that may be hazardous under California and Federal RCRA standards for lead be properly handled, packaged and transported under proper manifest to a permitted hazardous waste storage, treatment and disposal facility.
- ❖ **CDPH:** The Department of Public Health (DPH) has specific requirements (Title 17 Sections 35001 thru 36100) for hazard assessment and work involving lead-based paint (LBP) hazards in public or residential structures. These regulations require special certifications, work practices, and notifications for such activities.
- ❖ **Senate Bill 460 (SB 460):** An act to amend Section 1941.1 of the Civil Code, and to amend Sections 17961, 17980, and 124130 of, and to add Sections 17920.10, 105251, 105252, 105253, 105254, 105255, 105256, and 105257 to, the Health and Safety Code, relating to lead abatement. This bill allows for fines and criminal penalties to be levied on any person who is found to have performed lead abatement without containment or created a measurable lead hazard based upon current CDPH standards. The testing for this determination can be initiated by any local official. A determination of a lead hazard is not solely based upon the lead content of the paint or coating and can be the result of the disturbance of such materials with low concentrations of lead.
- ❖ **EPA Lead Renovation, Repair, and Paint Rule (40 CFR, Part 745):** Beginning in April 2010, contractors performing renovation, repair and painting projects that disturb lead-based paint in homes, child care facilities, and schools built before 1978 must be certified and must follow specific work practices to prevent lead contamination.

POLYCHLORINATED BIPHENYL (PCBS) AND DIETHYLHEXYL PHTHALATE (DEHP)

Field observations by Citadel indicated that equipment potentially containing PCBs/DEHPs are present throughout the Survey Area. This portion of the survey was not intended to be comprehensive, but rather sought to identify potential hazards that will be encountered during the project.

Typically, during demolition, the contractor will dismantle the fluorescent light fixtures by removing the tubes and then the ballasts and package them for recycling and disposal, regardless of the ballast labeling. The recommended disposal method for ballasts is recycle/incineration whereby the PCB and DEHP capacitors and asphalt potting material are removed and incinerated, and the metal carcasses are cleaned and sent to a metal recycler.

UNIVERSAL/ELECTRONIC/RADIOACTIVE WASTES

Field observations by Citadel indicated that Universal Wastes/Electronic Wastes are present throughout the Survey Area. The inspection for Universal Wastes/Electronic Wastes consisted of visual inspection of the buildings to determine if Universal Wastes/Electronic Wastes were present. This portion of the survey was not intended to be comprehensive, but rather sought to identify potential hazards that will be encountered during the project.

The *Universal Waste Rule* found in the California Code of Regulations, Title 22, division 4.5, Chapter 23, regulates the disposal of the following items:

Citadel visually identified universal/electronic/radioactive wastes present throughout the Survey Area. In accordance with regulatory requirements, Universal/Electronic/Radioactive Wastes should be removed prior to demolition activities and set aside for re-use or disposal/recycling by a licensed recycler or specific licensee.

Citadel recommends either re-using the light tubes, lamps, or monitors, or utilizing a licensed recycler to process the Universal/Electronic Wastes removed from the building. Recycling facilities must be authorized by the California Environmental Protection Agency – Department of Toxic Substances Control (DTSC) or the state in which they are located.

Bill(s) of lading should accompany each load of waste that leaves the site, including the name and address of the Generator, Contractor, pick-up site, disposal site, and quantity of universal waste disposed. The recycler should provide a statement certifying recycling/disposal/destruction of the identified wastes, including the date(s) of recycling/disposal/destruction, and identifying the disposal/destruction process used. In the case of Tritium-containing exit devices, the general licensee must file a report with the NRC.

OZONE DEPLETING SUBSTANCES

Citadel visually identified potential ozone depleting substances are present throughout the Survey Area. This portion of the survey was not intended to be comprehensive, but rather sought to identify potential hazards that will be encountered during the project. Packaged Components Chlorofluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFC), as well as Halon, Sulfur Dioxide (SO₂), and/or Ammonia (NH₃) should be extracted from the fire extinguishers, freezers, HVAC units, and other ODS-containing equipment by a trained technician for recovery or recycling prior to demolition.

5.0 SURVEY LIMITATIONS

The survey and bulk sampling were limited to representative locations of the buildings that were explicitly defined by the Client to be surveyed. Limited intrusive and no destructive sampling was conducted as part of the scope of services performed. Additional suspect materials and/or debris may be present in concealed spaces including, but not limited to, above-ceiling areas, within wall cavities, and beneath floor coverings, but will only be accessible during the course of demolition activities. Care must be exercised when accessing these areas. Any suspect environmentally regulated materials (ERMs) encountered during the course of demolition/renovation activities that were not previously sampled, including ERMs not specifically addressed herein, must be presumed to be ACMs/ACCMs and LCMs until sampled and proven otherwise. Quantities presented in this report are for informational purposes only and should not be the sole basis for an estimate for abatement. Contractors should verify and conduct their own takeoffs for their purposes.

This report has been prepared by Citadel EHS exclusively for our Client and their Authorized Representatives. The information contained herein pertains only to accessible materials identified

at the referenced property at the time of the survey performed in accordance with a mutually agreed upon scope of work. The findings and recommendations presented are based upon observations of present conditions and may not necessarily indicate future conditions. Citadel EHS implies no warranty to the accuracy of information provided them by outside agents and transmitted herein. The information contained herein may not be used, disclosed, or copied without written permission of the Client.

This survey report is not intended to be a stand-alone design document for the solicitation of bids. This survey report should only be used for developing the scope of work, bid/contract document, and as a reference document.

6.0 DISCLAIMER

The services performed by Citadel Environmental Services, Inc. ("Citadel"), d.b.a. Citadel EHS, in connection with this Report were performed in accordance with generally and currently accepted engineering practices and principles; provided, however, Citadel completed such services as directed by the Client and the recommendations described in this Report are therefore limited in purpose and scope. The procedures and methodologies used by Citadel in its performance of services, and the recommendations contained herein, are not intended to meet the requirements under any specific laws or regulatory guidelines unless expressly set forth in the Proposal.

The recommendations and conclusions set forth in this Report are based on information and data available to Citadel during the course of its performance of the services. Citadel relied on the information and data provided by or on behalf of Client, including, if applicable, historical and present operations, conditions and test data, and Citadel assumed all such information and data was correct and complete. Citadel shall not be liable for any damages or losses resulting from inaccuracies of, or omissions from, information or data provided by or on behalf of the Client, any interested third-parties, or any federal, state, county, or local governmental authority, or otherwise available in the public domain.

The information contained in this Report and conclusions resulting therefrom are based solely on information available to Citadel at the time of its performance of services, and from observations and perceived conditions and materials existing on the date of Citadel's limited survey of the site, if applicable. Citadel disclaims any inaccuracy in the Report as a result of any part or parcel of property to which Citadel was not provided access, or which was concealed, including, but not limited to, wall cavities/chases, ceiling plenums, below floor finishes, crawlspaces, below grade, beneath existing structures, or behind electrical panels.

The findings and recommendations presented in this Report are based upon observations of present conditions and may not necessarily indicate future conditions. No conclusions should be construed or inferred other than those expressly stated in this Report. EXCEPT FOR ANY WARRANTIES EXPRESSLY SET FORTH IN THE PROPOSAL OR OTHER WRITTEN AGREEMENT BETWEEN CITADEL AND CLIENT, CITADEL MAKES NO WARRANTIES HEREUNDER WITH RESPECT TO ANY INFORMATION CONTAINED IN THIS REPORT, EXPRESS OR IMPLIED, AND CITADEL HEREBY DISCLAIMS ALL OTHER WARRANTIES.

All testing and remediation methods have reliability limitations, and no method nor number of sampling locations can guarantee that a hazard will be discovered if contamination or other evidence of the hazard is not encountered within the performance of the services as authorized. Reliability of testing or remediation varies according to the sampling frequency and other service variables that were selected by Client. Citadel shall not be at fault or liable for any such limitations.

The information and opinions rendered in this report are exclusively for use and reliance by the Client. The information contained herein may not be used, disclosed, or copied without written permission of the Client and may not be relied upon without the written permission of Citadel.

7.0 SIGNATURES

Services performed by:

[Refer to project documentation for signature]

Nelson Ortiz
Certified Site Surveillance Technician (No. 15-5586)
Lead-Related Construction Sampling Technician (LRC-00008185)

Brian Weltman
Certified Site Surveillance Technician (No. 17-5942)
Lead-Related Construction Sampling Technician (LRC-00002502)

Report Prepared by:

Jack Digitally signed by
Jack Samuels
Samuels Date: 2021.12.03
10:42:14 -08'00'
Jack Samuels
Associate Principal, Building Sciences
Certified Asbestos Consultant (No. 92-0475)
Lead-Related Construction Inspector/Assessor (LRC-00008171)

Report Reviewed by:

Josh Digitally signed by
Josh LaPrease
LaPrease Date: 2021.12.03
10:42:39 -08'00'
Josh LaPrease, CAC, CDPH
Senior Project Manager, Building Sciences
Certified Asbestos Consultant (No. 19-6681)
Lead-Related Construction Inspector/Assessor (LRC-00000890)

Attachments

Appendix A

Project Team Certifications

CERTIFICATIONS

INSPECTOR	Nelson N. Ortiz
CERTIFICATION	Certified Site Surveillance Technician
CERTIFIED BY	State of California Division of Occupational Safety and Health
CERTIFICATION NUMBER	15-5586
EXPIRATION DATE	03/15/22

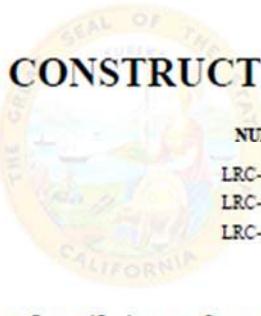
INSPECTOR	Nelson N. Ortiz
CERTIFICATION	Lead-Related Project Monitor Lead-Related Sampling Technician
CERTIFIED BY	State of California Department of Public Health
CERTIFICATION NUMBER	LRC-00008186 LRC-00008185
EXPIRATION DATE	02/1/2022

		STATE OF CALIFORNIA DEPARTMENT OF PUBLIC HEALTH		
LEAD-RELATED CONSTRUCTION CERTIFICATE				
INDIVIDUAL: Nelson Ortiz	CERTIFICATE TYPE: Lead Project Monitor Lead Sampling Technician	NUMBER: LRC-00008186 LRC-00008185	EXPIRATION DATE: 2/1/2022 2/1/2022	
Disclaimer: This document alone should not be relied upon to confirm certification status. Compare the individual's photo and name to another valid form of government issued photo identification. Verify the individual's certification status by searching for Lead-Related Construction Professionals at www.cdph.ca.gov/programs/clpph or calling (800) 597-LEAD.				

CERTIFICATIONS

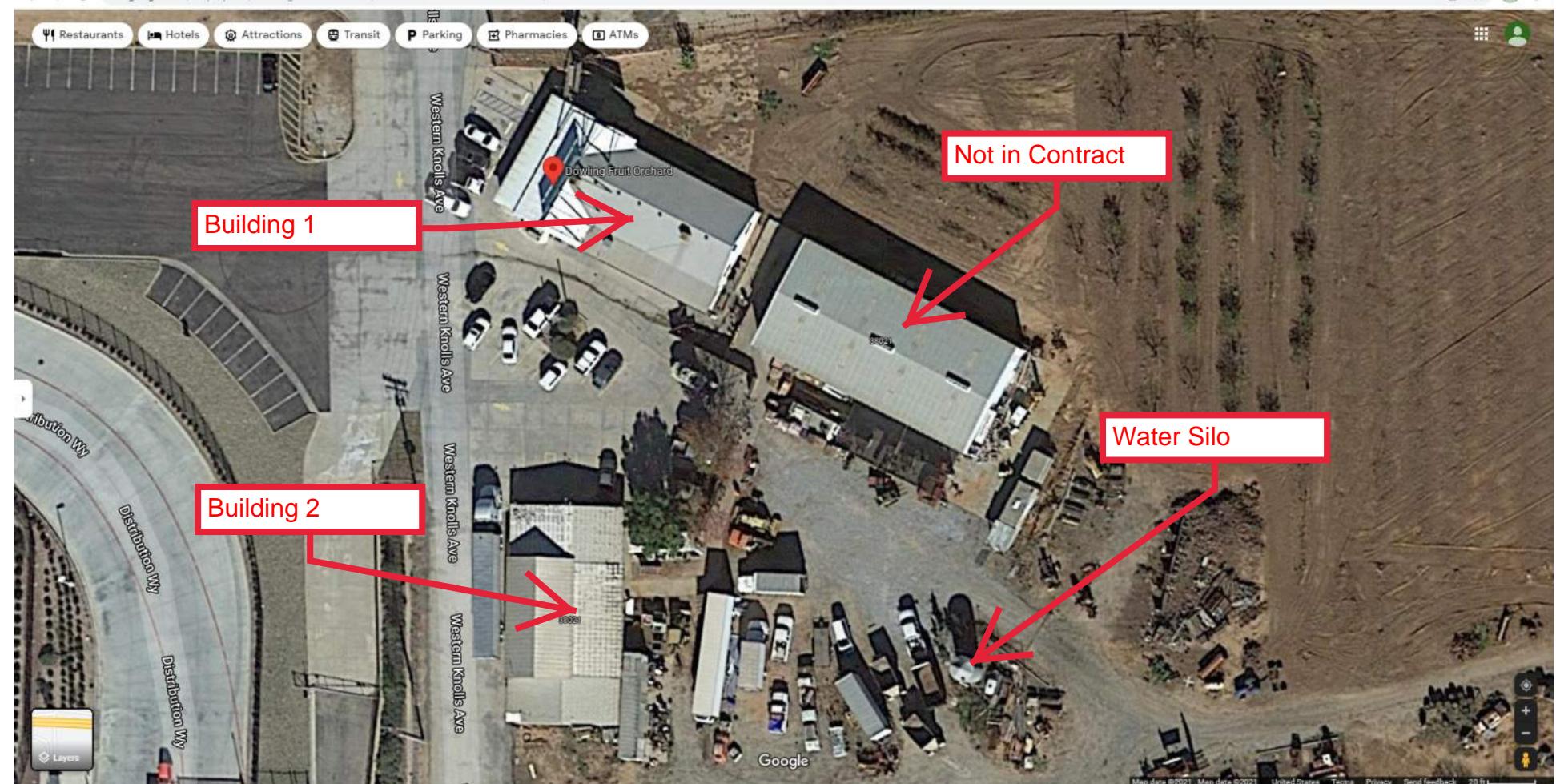
INSPECTOR	Brian G Weltman
CERTIFICATION	Certified Site Surveillance Technician
CERTIFIED BY	State of California Division of Occupational Safety and Health
CERTIFICATION NUMBER	17-5942
EXPIRATION DATE	1/17/2022

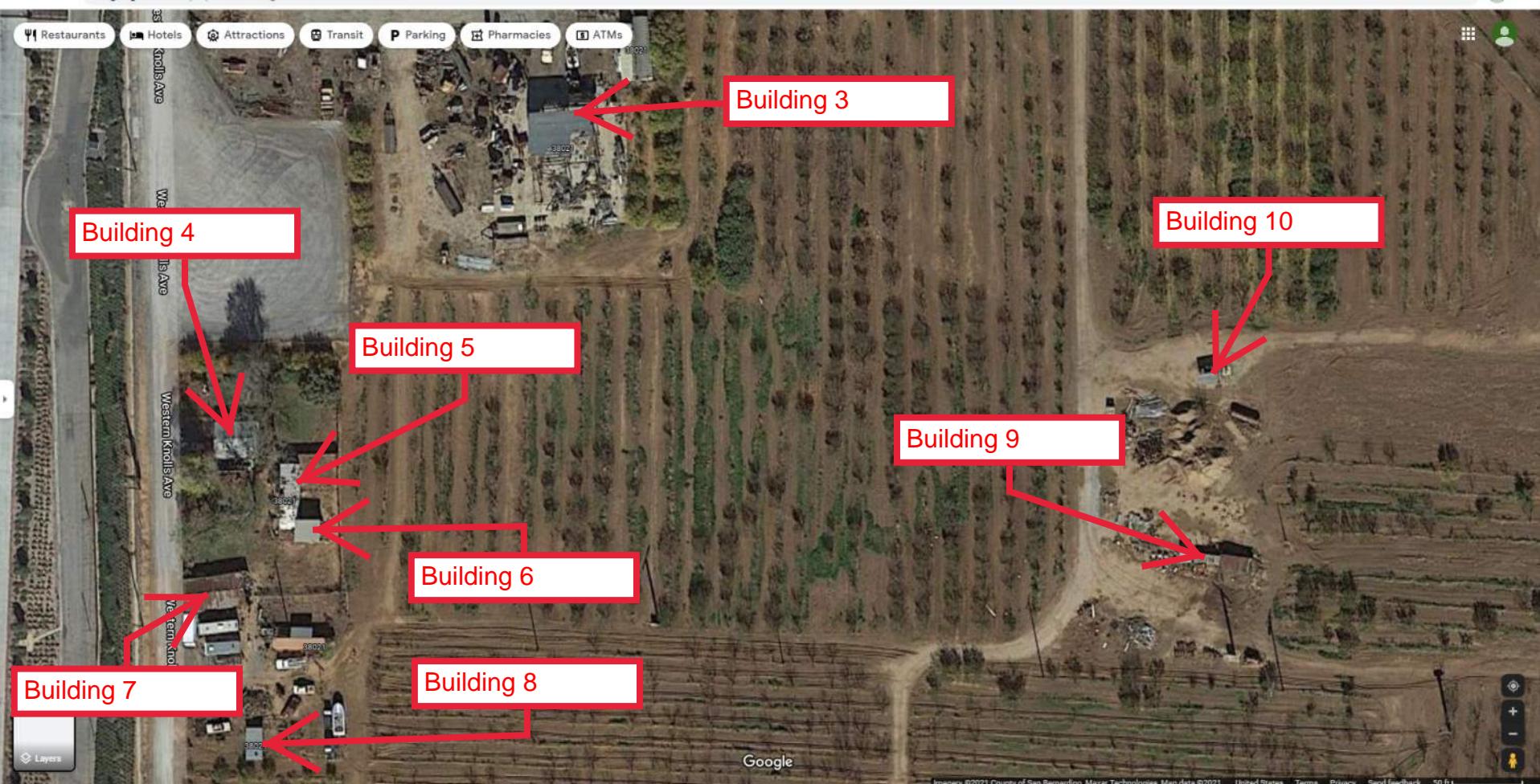
INSPECTOR	Brian G Weltman
CERTIFICATION/ CERTIFICATION NUMBER	Lead-Related Project Monitor/ LRC-00001670
CERTIFICATION/ CERTIFICATION NUMBER	Lead-Related Sampling Technician/ LRC-00002502
CERTIFIED BY	State of California Department of Public Health
EXPIRATION DATE	LRST 9/16/22 LRPM 11/24/22

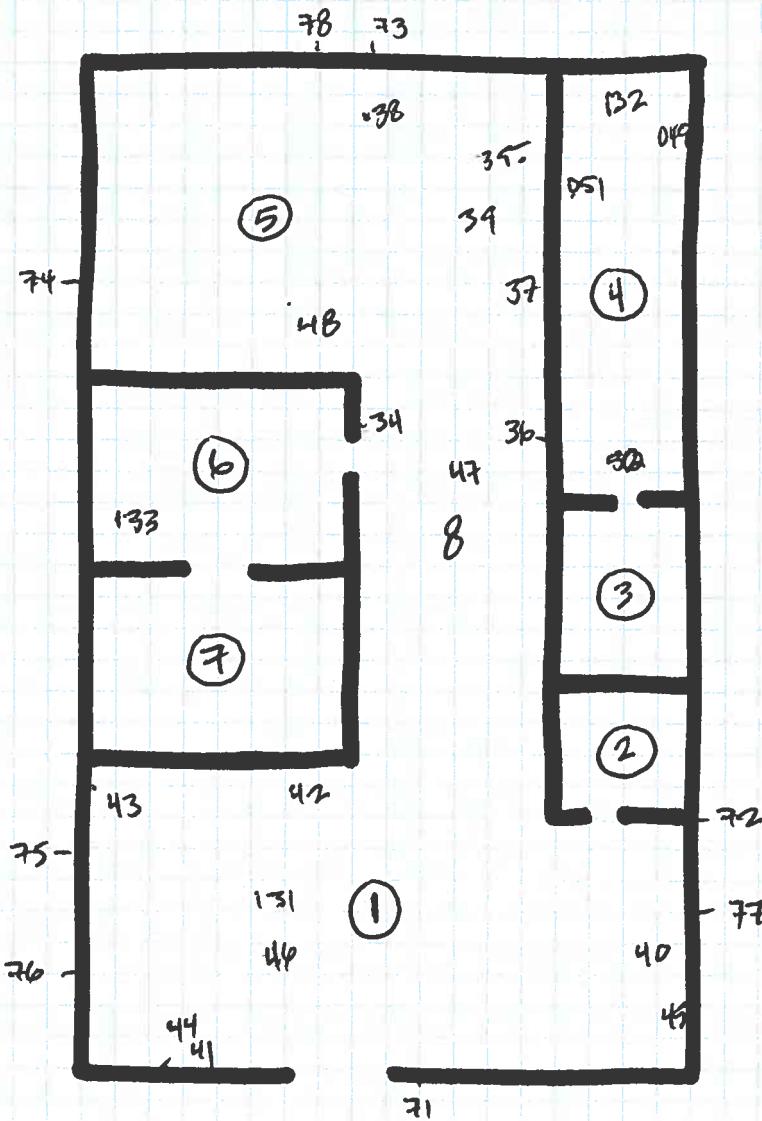

		STATE OF CALIFORNIA DEPARTMENT OF PUBLIC HEALTH		
LEAD-RELATED CONSTRUCTION CERTIFICATE				
INDIVIDUAL:	CERTIFICATE TYPE:	NUMBER:	EXPIRATION DATE:	
	Lead Project Monitor Lead Sampling Technician	LRC-00001670 LRC-00002502	11/24/2022 9/16/2022	
Brian Weltman <small>Disclaimer: This document alone should not be relied upon to confirm certification status. Compare the individual's photo and name to another valid form of government issued photo identification. Verify the individual's certification status by searching for Lead-Related Construction Professionals at www.cdph.ca.gov/programs/clpb or calling (800) 597-LEAD.</small>				

CERTIFICATIONS

INSPECTOR	Jack Simmons Samuels
CERTIFICATION	Certified Asbestos Consultant
CERTIFIED BY	State of California Division of Occupational Safety and Health
CERTIFICATION NUMBER	92-0475
EXPIRATION DATE	01/07/22


INSPECTOR	Jack Simmons Samuels
CERTIFICATION	Lead-Related Inspector/Assessor Supervisor Project Monitor
CERTIFIED BY	State of California Department of Public Health
CERTIFICATION NUMBER	5380
EXPIRATION DATE	03/11/22


<p>California Department of PublicHealth</p>		<p>STATE OF CALIFORNIA DEPARTMENT OF PUBLIC HEALTH</p>	
<h3>LEAD-RELATED CONSTRUCTION CERTIFICATE</h3>			
INDIVIDUAL: <p>Jack Samuels</p>	CERTIFICATE TYPE: Lead Inspector/Assessor Lead Project Monitor Lead Supervisor	NUMBER: LRC-00008171 LRC-00008172 LRC-00008170	EXPIRATION DATE: 3/11/2022 3/11/2022 3/11/2022
<p>Disclaimer: This document alone should not be relied upon to confirm certification status. Compare the individual's photo and name to another valid form of government issued photo identification. Verify the individual's certification status by searching for Lead-Related Construction Professionals at www.cdph.ca.gov/programs/clppb or calling (800) 597-LEAD.</p>			


Appendix B

Drawings with Bulk Sample Locations

Dowling Ranch
Site Plan Page 2

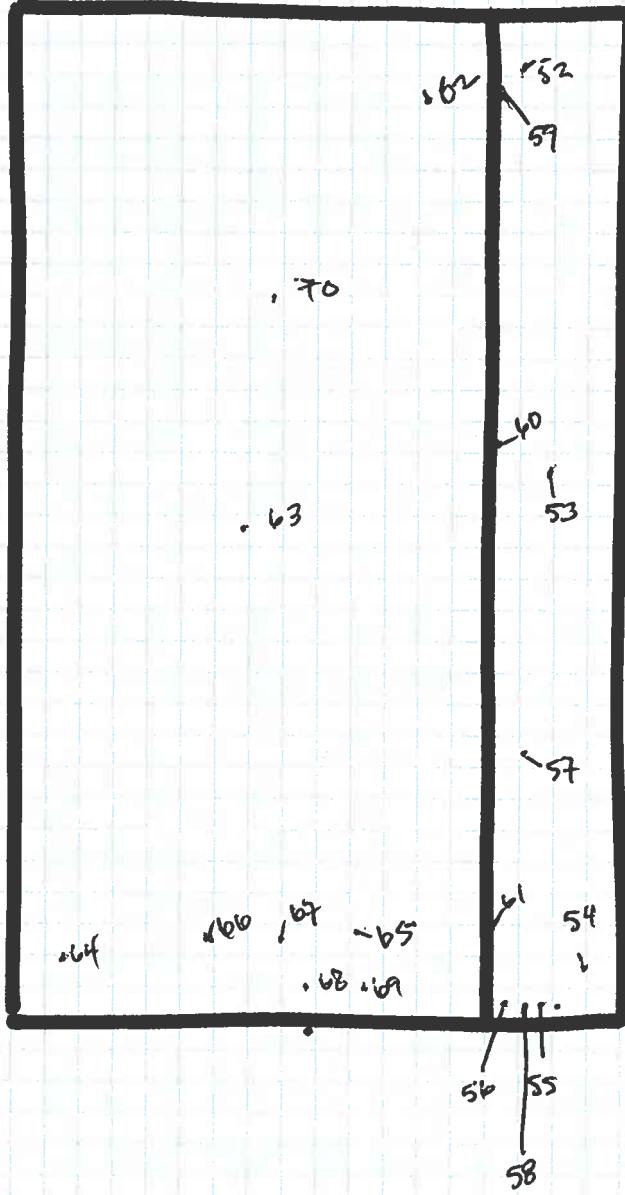
Project No.: 0096.1039.0

Project ID: Dowling Fruit Orchard

Demo-Level Survey

Site Address: 38021 CA-60

Site Address: 36021 CA-60


Client: Trammel Crow Company

Drawing: Building 1

Floor: 1st fl.

Date: 11-13-21

Inspector: Brian W. Nelson D.

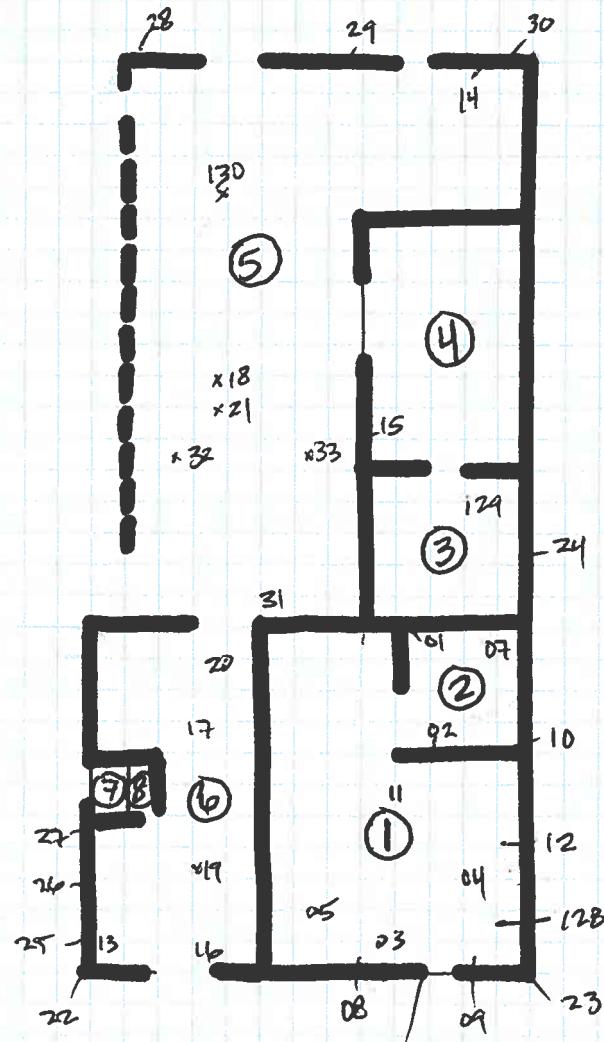
Project No.: 0096.1039.0

Project ID: Dowling Fruit Orchard

Demo-Level Survey

Site Address: 38021 CA-60

Beaumont CA 92223


Client: Trammel Crow Company

Drawing: Building 1 - Roof

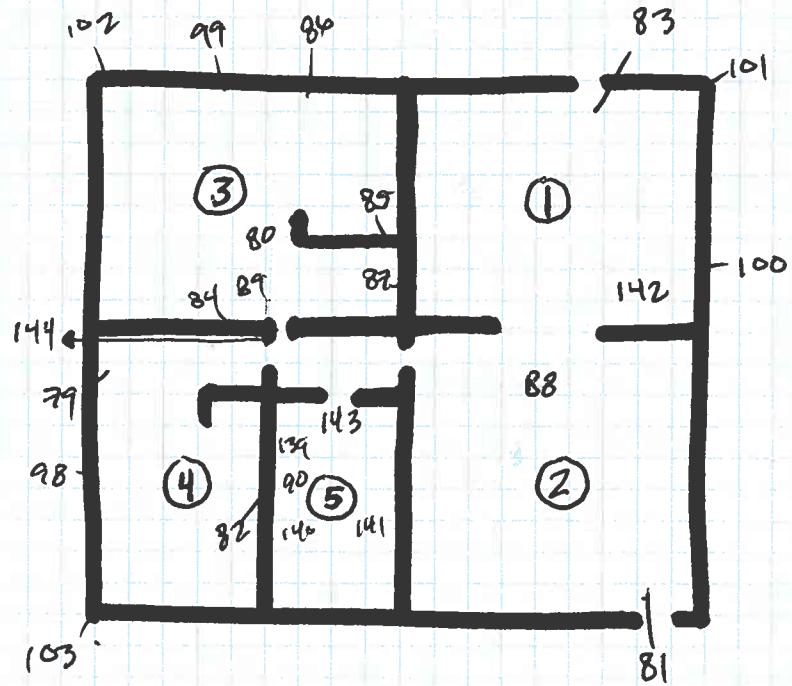
Floor: Roof

Date: 11-17-24

Inspector: Brian W. Nelson S.

Project No.: 0096.1039.0

Project ID: Dowling Fruit Orchard
Demo-Level Survey


Site Address: 38021 CA-60
Beaumont CA 92223

Client: Trammel Crow Company

Drawing: Building 2
Floor: 1st flr

Date: 11-17-21

Inspector: Brian W / Nelson D.

Project No.: 0096.1039.0

Project ID: Dowling Fruit Orchard

Demo-Level Survey

Site Address: 38021 CA-60

Beaumont CA 92223

Client: Trammel Crow Company

Date: 11/17/21

Drawing: Building 4

Floor: 1st Flr

Inspector: Brian W / Nelson O.

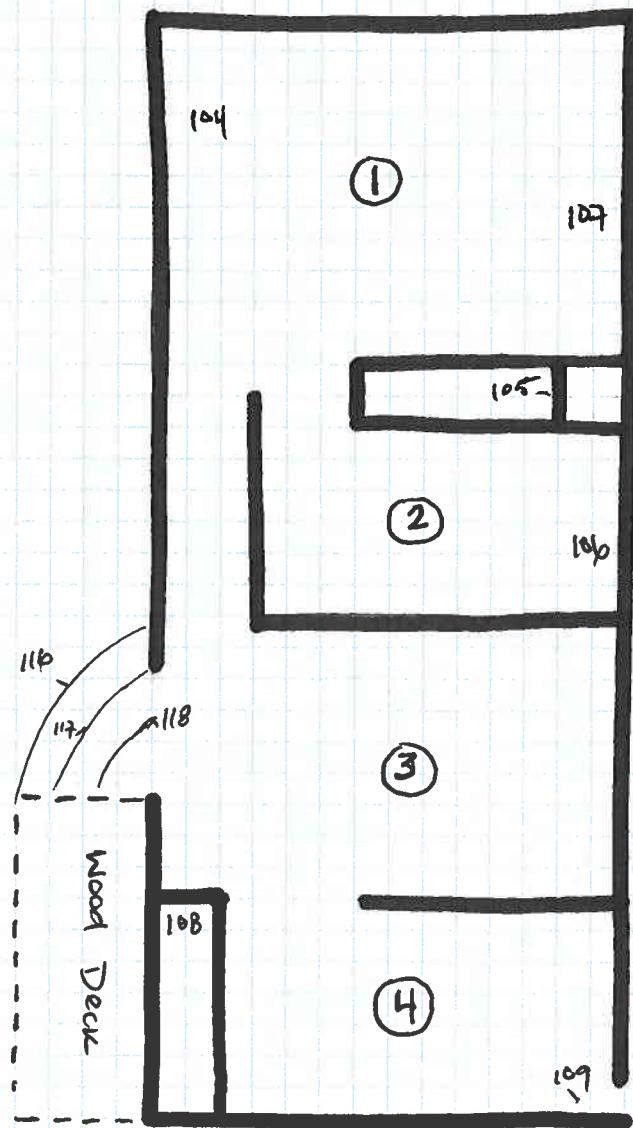
Project No.: 0096.1039.0

Project ID: Dowling Fruit Orchard

Demo-Level Survey

Site Address: 38021 CA-60

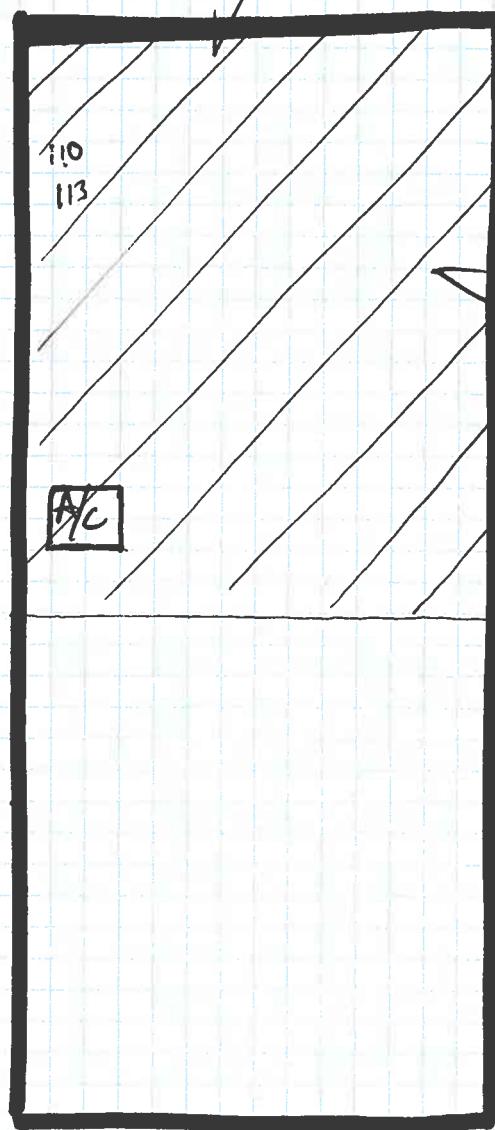
Beaumont CA 92223


Client: Trammel Crow Company

Date: 11/17/21

Drawing: Building 4

Floor: Roof


Inspector: Brian W. / Nelson D.

Project No.: 0096.1039.0
 Project ID: Dowling Fruit Orchard
 Demo-Level Survey
 Site Address: 38021 CA-60
 Beaumont CA 92223

Client: Trammel Crow Company

Date: 11/17/21
 Drawing: Building 5
 Floor: 1st flr
 Inspector: Brian W / Nelson D.

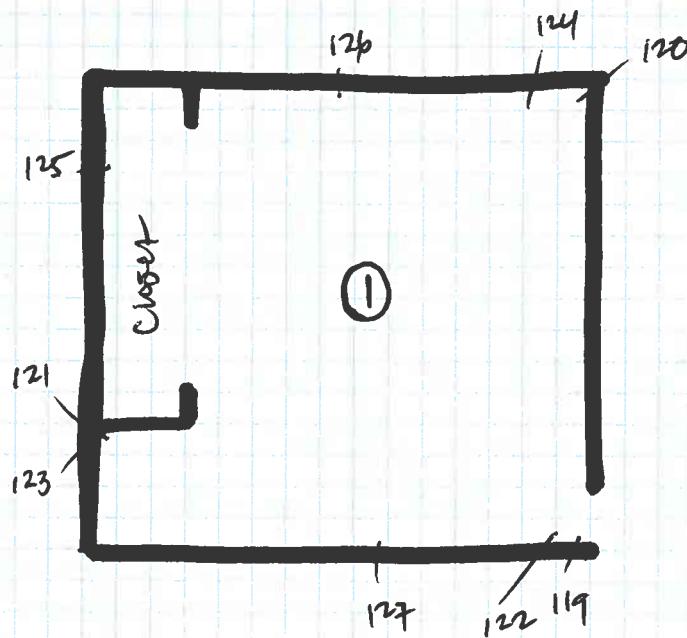
111: Rolled Roof

Project No.: 0096.1039.0

Project ID: Dowling Fruit Orchard

Demo-Level Survey

Site Address: 38021 CA-60


Beaumont CA 92223

Client: Trammel Crow Company

Date: 11/17/21

Drawing: Building 5
Floor: Roof

Inspector: Brian W / Nelson O.

Project No.: 0096.1039.0
 Project ID: Dowling Fruit Orchard
 Demo-Level Survey
 Site Address: 38021 CA-60
 Beaumont CA 92223

1

Client: Trammel Crow Company

Date: 11/17/21
 Drawing: Building 6
 Floor: 1st FLC
 Inspector: Brian W. / Nelson D.

Appendix C

Asbestos Laboratory Results

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS**Attention:** Jack Samuels**Phone:** (818) 246-2707Citadel Environmental Services, Inc.
2525 Cherry Avenue, Suite 105
Signal Hill, CA 90755**Fax:** (818) 246-3145**Received Date:** 11/19/2021 2:24 PM**Analysis Date:** 11/23/2021 - 11/24/2021**Collected Date:** 11/17/2021**Project:** 0096.1039.0/ Dowling Fruit Orchard Demo- Level Survey (JS)**Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy**

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
001-Finish Coat 712102644-0001	Unit B2/ Level 1/ Room 2 - white sand texture plaster walls	White/Yellow/Green Non-Fibrous Homogeneous HA: WPF1		100% Non-fibrous (Other)	<1% Chrysotile
001-Base Coat 712102644-0001A	Unit B2/ Level 1/ Room 2 - white sand texture plaster walls	Gray Non-Fibrous Homogeneous HA: WPF1		100% Non-fibrous (Other)	None Detected
002-Texture 712102644-0002	Unit B2/ Level 1/ Room 2 - white sand texture plaster walls	White/Yellow Non-Fibrous Homogeneous HA: WPF1		100% Non-fibrous (Other)	None Detected
002-Plaster 712102644-0002A	Unit B2/ Level 1/ Room 2 - white sand texture plaster walls	Gray Non-Fibrous Homogeneous HA: WPF1		100% Non-fibrous (Other)	None Detected
003 712102644-0003	Unit B2/ Level 1/ Room 1 - white sand texture plaster walls	Gray Non-Fibrous Homogeneous HA: WPF1		100% Non-fibrous (Other)	None Detected
004-VFT 712102644-0004	Unit B2/ Level 1/ Room 1 - wood pattern 12x12 vft	Brown Non-Fibrous Homogeneous HA: VFT1		100% Non-fibrous (Other)	None Detected
004-Mastic 712102644-0004A	Unit B2/ Level 1/ Room 1 - wood pattern 12x12 vft	Yellow/Clear Non-Fibrous Homogeneous HA: VFT1		100% Non-fibrous (Other)	None Detected
004-Leveling Compound 712102644-0004B	Unit B2/ Level 1/ Room 1 - wood pattern 12x12 vft	Gray Non-Fibrous Homogeneous HA: VFT1		100% Non-fibrous (Other)	None Detected
005-VFT 712102644-0005	Unit B2/ Level 1/ Room 1 - wood pattern 12x12 vft	Brown Non-Fibrous Homogeneous HA: VFT1		100% Non-fibrous (Other)	None Detected
005-Mastic 712102644-0005A	Unit B2/ Level 1/ Room 1 - wood pattern 12x12 vft	Yellow/Clear Non-Fibrous Homogeneous HA: VFT1		100% Non-fibrous (Other)	None Detected
006-VFT 712102644-0006	Unit B2/ Level 1/ Room 1 - wood pattern 12x12 vft	Brown/Black Non-Fibrous Homogeneous HA: VFT1		100% Non-fibrous (Other)	None Detected
006-Mastic 712102644-0006A	Unit B2/ Level 1/ Room 1 - wood pattern 12x12 vft	Yellow Non-Fibrous Homogeneous HA: VFT1		100% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
007-Ceiling Tile 712102644-0007	Unit B2/ Level 1/ Room 2 - smooth white plaster ceiling	Gray/White Non-Fibrous Homogeneous	35% Cellulose 15% Min. Wool HA: CP1	15% Perlite 35% Non-fibrous (Other)	None Detected
007-Drywall 712102644-0007A	Unit B2/ Level 1/ Room 2 - smooth white plaster ceiling	Brown/White Fibrous Heterogeneous	20% Cellulose HA: CP1	80% Non-fibrous (Other)	None Detected
007-Plaster 712102644-0007B	Unit B2/ Level 1/ Room 2 - smooth white plaster ceiling	Gray/White Non-Fibrous Homogeneous	HA: CP1	100% Non-fibrous (Other)	None Detected
008-Drywall 712102644-0008	Unit B2/ Level 1/ Room 1 - smooth white plaster ceiling	Brown/White Fibrous Heterogeneous	20% Cellulose 2% Glass HA: CP1	78% Non-fibrous (Other)	None Detected
008-Plaster 712102644-0008A	Unit B2/ Level 1/ Room 1 - smooth white plaster ceiling	Gray Non-Fibrous Homogeneous	HA: CP1	100% Non-fibrous (Other)	None Detected
009-Plaster 712102644-0009	Unit B2/ Level 1/ Room 1 - smooth white plaster ceiling	Gray Non-Fibrous Homogeneous	HA: CP1	100% Non-fibrous (Other)	None Detected
009-Drywall 712102644-0009A	Unit B2/ Level 1/ Room 1 - smooth white plaster ceiling	Brown/White Fibrous Heterogeneous	20% Cellulose HA: CP1	80% Non-fibrous (Other)	None Detected
010 712102644-0010	Unit B2/ Level 1/ Room 2 - yellow carpet mastic	Gray/Yellow Non-Fibrous Homogeneous	HA: FCM1	100% Non-fibrous (Other)	None Detected
011 712102644-0011	Unit B2/ Level 1/ Room 1 - yellow carpet mastic	Gray/Yellow Non-Fibrous Homogeneous	HA: FCM1	100% Non-fibrous (Other)	None Detected
012 712102644-0012	Unit B2/ Level 1/ Room 1 - yellow carpet mastic	Yellow Non-Fibrous Homogeneous	HA: FCM1	100% Non-fibrous (Other)	None Detected
013 712102644-0013	Unit B2/ Level 1/ East - black moisture barrier paper	Brown Fibrous Homogeneous	60% Cellulose HA: MISC1	40% Non-fibrous (Other)	None Detected
014 712102644-0014	Unit B2/ Level 1/ South - black moisture barrier paper	Brown Fibrous Homogeneous	60% Cellulose HA: MISC1	40% Non-fibrous (Other)	None Detected
015 712102644-0015	Unit B2/ Level 1/ East - black moisture barrier paper	Brown/Black Fibrous Homogeneous	45% Cellulose HA: MISC1	55% Non-fibrous (Other)	None Detected
016 712102644-0016	Unit B2/ Level 1/ screw heads + seams NE - black roof mastic	Black Non-Fibrous Homogeneous	10% Cellulose HA: RPM1	90% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos
			% Fibrous	% Non-Fibrous	% Type
017 712102644-0017	Unit B2/ Level 1/ screw heads + seams N - black roof mastic	Black/Silver Non-Fibrous Homogeneous		90% Non-fibrous (Other)	10% Chrysotile
			HA: RPM1		
018 712102644-0018	Unit B2/ Level 1/ screw heads + seams E - black roof mastic	Black Non-Fibrous Homogeneous		92% Non-fibrous (Other)	8% Chrysotile
			HA: RPM1		
019 712102644-0019	Unit B2/ Level 1 - black roof mastic	Black/Silver Non-Fibrous Homogeneous		92% Non-fibrous (Other)	8% Chrysotile
			HA: RPM2		
020 712102644-0020	Unit B2/ Level 1 - black roof mastic	Black/Silver Non-Fibrous Homogeneous		92% Non-fibrous (Other)	8% Chrysotile
			HA: RPM2		
021 712102644-0021	Unit B2/ Level 1 - black roof mastic	Black/Silver Non-Fibrous Homogeneous		96% Non-fibrous (Other)	4% Chrysotile
			HA: RPM2		
022-Finish Coat 712102644-0022	Unit B2/ Level 1/ NE - grey sand finish stucco exterior	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
022-Base Coat 712102644-0022A	Unit B2/ Level 1/ NE - grey sand finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
023-Finish Coat 712102644-0023	Unit B2/ Level 1/ NW - grey sand finish stucco exterior	White/Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
023-Base Coat 712102644-0023A	Unit B2/ Level 1/ NW - grey sand finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
024-Finish Coat 712102644-0024	Unit B2/ Level 1/ W center - grey sand finish stucco exterior	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
024-Base Coat 712102644-0024A	Unit B2/ Level 1/ W center - grey sand finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
025-Texture 712102644-0025	Unit B2/ Level 1/ East wall North - grey trowel finish stucco exterior	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES2		
025-Stucco 712102644-0025A	Unit B2/ Level 1/ East wall North - grey trowel finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES2		
026-Texture 712102644-0026	Unit B2/ Level 1/ East wall middle - grey trowel finish stucco exterior	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES2		

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
026-Stucco 712102644-0026A	Unit B2/ Level 1/ East wall middle - grey trowel finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES2		
027-Texture 712102644-0027	Unit B2/ Level 1/ East wall South - grey trowel finish stucco exterior	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES2		
027-Stucco 712102644-0027A	Unit B2/ Level 1/ East wall South - grey trowel finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES2		
028 712102644-0028	Unit B2/ Level 1/ SE - grey smooth finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES3		
029 712102644-0029	Unit B2/ Level 1/ S - grey smooth finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES3		
030 712102644-0030	Unit B2/ Level 1/ SW - grey smooth finish stucco exterior	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES3		
031 712102644-0031	Unit B2/ Level 1/ East roof seam - white roof mastic	White/Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: RPM3		
032 712102644-0032	Unit B2/ Level 1/ SE Lower East roof seam - white roof mastic	White/Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: RPM3		
033 712102644-0033	Unit B2/ Level 1/ Upper East roof seam - white roof mastic	Black/Silver Non-Fibrous Homogeneous		92% Non-fibrous (Other)	8% Chrysotile
			HA: RPM3		
034-Finish Coat 712102644-0034	Unit B1/ Level 1/ Room 8 N - white smooth wall plaster	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF1		
034-Base Coat 712102644-0034A	Unit B1/ Level 1/ Room 8 N - white smooth wall plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF1		
035-Finish Coat 712102644-0035	Unit B1/ Level 1/ Room 5 SE - white smooth wall plaster	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF1		
035-Base Coat 712102644-0035A	Unit B1/ Level 1/ Room 5 SE - white smooth wall plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF1		
036-Finish Coat 712102644-0036	Unit B1/ Level 1/ Room S - white smooth wall plaster	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF1		

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
036-Base Coat 712102644-0036A	Unit B1/ Level 1/ Room S - white smooth wall plaster	Gray Non-Fibrous Homogeneous HA: WPF1		100% Non-fibrous (Other)	None Detected
037-Finish Coat 712102644-0037	Unit B1/ Level 1/ Room 5 S - white smooth ceiling paster	White Non-Fibrous Homogeneous HA: CP1		100% Non-fibrous (Other)	None Detected
037-Base Coat 712102644-0037A	Unit B1/ Level 1/ Room 5 S - white smooth ceiling paster	Gray Non-Fibrous Homogeneous HA: CP1		100% Non-fibrous (Other)	None Detected
038-Finish Coat 712102644-0038	Unit B1/ Level 1/ Room 5 E - white smooth ceiling paster	White Non-Fibrous Homogeneous HA: CP1		100% Non-fibrous (Other)	None Detected
038-Base Coat 712102644-0038A	Unit B1/ Level 1/ Room 5 E - white smooth ceiling paster	Gray Non-Fibrous Homogeneous HA: CP1		100% Non-fibrous (Other)	None Detected
039-Finish Coat 712102644-0039	Unit B1/ Level 1/ Room 5 center - white smooth ceiling paster	White Non-Fibrous Homogeneous HA: CP1		100% Non-fibrous (Other)	None Detected
039-Base Coat 712102644-0039A	Unit B1/ Level 1/ Room 5 center - white smooth ceiling paster	Gray Non-Fibrous Homogeneous HA: CP1		100% Non-fibrous (Other)	None Detected
040-Finish Coat 712102644-0040	Unit B1/ Level 1/ Room 1 S - white trowelled ceiling plaster	White Non-Fibrous Homogeneous HA: CP2		100% Non-fibrous (Other)	None Detected
040-Base Coat 712102644-0040A	Unit B1/ Level 1/ Room 1 S - white trowelled ceiling plaster	Gray Non-Fibrous Homogeneous HA: CP2		100% Non-fibrous (Other)	None Detected
041-Finish Coat 712102644-0041	Unit B1/ Level 1/ Room 1 W - white trowelled ceiling plaster	White Non-Fibrous Homogeneous HA: CP2		100% Non-fibrous (Other)	None Detected
041-Base Coat 712102644-0041A	Unit B1/ Level 1/ Room 1 W - white trowelled ceiling plaster	Gray Non-Fibrous Homogeneous HA: CP2		100% Non-fibrous (Other)	None Detected
042-Finish Coat 712102644-0042	Unit B1/ Level 1/ Room 1 N - white trowelled ceiling plaster	White Non-Fibrous Homogeneous HA: CP2		100% Non-fibrous (Other)	None Detected
042-Base Coat 712102644-0042A	Unit B1/ Level 1/ Room 1 N - white trowelled ceiling plaster	Gray Non-Fibrous Homogeneous HA: CP2		100% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
043-Finish Coat 712102644-0043	Unit B1/ Level 1/ Room 1 N - white trowelled wall plaster	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF2		
043-Base Coat 712102644-0043A	Unit B1/ Level 1/ Room 1 N - white trowelled wall plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF2		
044-Finish Coat 712102644-0044	Unit B1/ Level 1/ Room 1 W - white trowelled wall plaster	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF2		
044-Base Coat 712102644-0044A	Unit B1/ Level 1/ Room 1 W - white trowelled wall plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF2		
045-Finish Coat 712102644-0045	Unit B1/ Level 1/ Room 1 S - white trowelled wall plaster	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF2		
045-Base Coat 712102644-0045A	Unit B1/ Level 1/ Room 1 S - white trowelled wall plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WPF2		
046 712102644-0046	Unit B1/ Level 1/ Room 1 under display racks W - black mastic floor	Black Non-Fibrous Homogeneous	10% Cellulose	90% Non-fibrous (Other)	None Detected
			HA: MISC1		
047 712102644-0047	Unit B1/ Level 1/ Room 8 under display racks center - black mastic floor	Black Non-Fibrous Homogeneous	10% Synthetic	90% Non-fibrous (Other)	None Detected
			HA: MISC1		
048 712102644-0048	Unit B1/ Level 1/ Room 5 under display racks E - black mastic floor	Black Non-Fibrous Homogeneous	8% Synthetic	92% Non-fibrous (Other)	None Detected
			HA: MISC1		
049 712102644-0049	Unit B1/ Level 1/ Room 4 S - white drywall ceiling	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
			HA: CSR1		
050-Drywall 712102644-0050	Unit B1/ Level 1/ Room 4 W - white drywall ceiling	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
			HA: CSR1		
050-Joint Compound 712102644-0050A	Unit B1/ Level 1/ Room 4 W - white drywall ceiling	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: CSR1		
051-Drywall 712102644-0051	Unit B1/ Level 1/ Room 4 N - white drywall ceiling	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
			HA: CSR1		
051-Joint Compound 712102644-0051A	Unit B1/ Level 1/ Room 4 N - white drywall ceiling	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: CSR1		

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
052 712102644-0052	Unit B1/ Roof/ N/E - grey rolled roof membrane	Gray/Black Fibrous Heterogeneous	10% Synthetic HA: RFM1	90% Non-fibrous (Other)	None Detected
053 712102644-0053	Unit B1/ Roof/ center - grey rolled roof membrane	Gray/Black Fibrous Heterogeneous	15% Synthetic 10% Glass HA: RFM1	75% Non-fibrous (Other)	None Detected
054-Shingle 712102644-0054	Unit B1/ Roof/ S/W - grey rolled roof membrane	White/Black Fibrous Heterogeneous	10% Synthetic HA: RFM1	90% Non-fibrous (Other)	None Detected
054-Roofing 712102644-0054A	Unit B1/ Roof/ S/W - grey rolled roof membrane	Black Fibrous Homogeneous	10% Glass HA: RFM1	90% Non-fibrous (Other)	None Detected
054-Felts 712102644-0054B	Unit B1/ Roof/ S/W - grey rolled roof membrane	Black Fibrous Homogeneous	10% Glass HA: RFM1	90% Non-fibrous (Other)	None Detected
055 712102644-0055	Unit B1/ Roof/ West - black/ grey pitch pocket mastic	Brown/Black Non-Fibrous Homogeneous	10% Cellulose HA: RPM	90% Non-fibrous (Other)	None Detected
056 712102644-0056	Unit B1/ Roof/ N/W - rolled roof penetration mastic	Brown/Black Non-Fibrous Homogeneous	10% Cellulose HA: RPM1	90% Non-fibrous (Other)	None Detected
057 712102644-0057	Unit B1/ Roof/ West center - rolled roof penetration mastic	Gray/Black Non-Fibrous Homogeneous	10% Cellulose HA: RPM1	90% Non-fibrous (Other)	None Detected
058 712102644-0058	Unit B1/ Roof/ West - rolled roof penetration mastic	Gray/Black Non-Fibrous Homogeneous	10% Cellulose HA: RPM1	90% Non-fibrous (Other)	None Detected
059 712102644-0059	Unit B1/ Roof/ N/E - rolled roof seam mastic	Gray/Black Non-Fibrous Homogeneous	10% Cellulose HA: MISC2	90% Non-fibrous (Other)	None Detected
060 712102644-0060	Unit B1/ Roof/ center - rolled roof seam mastic	Gray/Black Non-Fibrous Homogeneous	10% Cellulose HA: MISC2	90% Non-fibrous (Other)	None Detected
061 712102644-0061	Unit B1/ Roof/ N/W - rolled roof seam mastic	Gray/Black Non-Fibrous Homogeneous	8% Cellulose HA: MISC2	92% Non-fibrous (Other)	None Detected
062-Shingle 1 712102644-0062	Unit B1/ Roof/ S/E - black/grey shingled roof (pitched) roof membrane	White/Black Fibrous Heterogeneous	10% Glass HA: RFM2	90% Non-fibrous (Other)	None Detected
062-Shingle 2 712102644-0062A	Unit B1/ Roof/ S/E - black/grey shingled roof (pitched) roof membrane	Gray/Black/Green Fibrous Heterogeneous	10% Glass HA: RFM2	90% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
062-Felt 712102644-0062B	Unit B1/ Roof/ S/E - black/grey shingled roof (pitched) roof membrane	Brown Fibrous Homogeneous	98% Cellulose HA: RFM2	2% Non-fibrous (Other)	None Detected
063-Shingle 1 712102644-0063	Unit B1/ Roof/ center - black/grey shingled roof (pitched) roof membrane	White/Black Fibrous Heterogeneous	10% Glass HA: RFM2	90% Non-fibrous (Other)	None Detected
063-Shingle 2 712102644-0063A	Unit B1/ Roof/ center - black/grey shingled roof (pitched) roof membrane	Gray/Black/Green Fibrous Heterogeneous	10% Glass HA: RFM2	90% Non-fibrous (Other)	None Detected
063-Felt 712102644-0063B	Unit B1/ Roof/ center - black/grey shingled roof (pitched) roof membrane	Brown Fibrous Homogeneous	98% Cellulose HA: RFM2	2% Non-fibrous (Other)	None Detected
064-Shingle 1 712102644-0064	Unit B1/ Roof/ N/W - black/grey shingled roof (pitched) roof membrane	White/Black Fibrous Heterogeneous	10% Glass HA: RFM2	90% Non-fibrous (Other)	None Detected
064-Shingle 2 712102644-0064A	Unit B1/ Roof/ N/W - black/grey shingled roof (pitched) roof membrane	Black Fibrous Heterogeneous	10% Glass HA: RFM2	90% Non-fibrous (Other)	None Detected
064-Felt 712102644-0064B	Unit B1/ Roof/ N/W - black/grey shingled roof (pitched) roof membrane	Brown Fibrous Homogeneous	98% Cellulose HA: RFM2	2% Non-fibrous (Other)	None Detected
065 712102644-0065	Unit B1/ Roof/ S/W - black/silver mastic at brace	Black/Silver Non-Fibrous Homogeneous		95% Non-fibrous (Other)	5% Chrysotile HA: MISC3
066 712102644-0066	Unit B1/ Roof/ W center - black/silver mastic at brace	Gray/Black/Silver Non-Fibrous Homogeneous	10% Cellulose HA: MISC3	85% Non-fibrous (Other)	5% Chrysotile
067 712102644-0067	Unit B1/ Roof/ N West - black/silver mastic at brace	Gray/Black Non-Fibrous Homogeneous	15% Cellulose HA: MISC3	82% Non-fibrous (Other)	3% Chrysotile
068 712102644-0068	Unit B1/ Roof/ West - black mastic @ HVAC stand	Gray/Black Non-Fibrous Homogeneous	10% Cellulose HA: MISC4	90% Non-fibrous (Other)	None Detected
069 712102644-0069	Unit B1/ Roof/ West - black mastic @ HVAC stand	Black/Beige Non-Fibrous Homogeneous	10% Cellulose HA: MISC4	90% Non-fibrous (Other)	None Detected
070 712102644-0070	Unit B1/ Roof/ East - black mastic at HVAC stand	Black/Beige Non-Fibrous Homogeneous	10% Cellulose HA: MISC3	90% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
071-Finish Coat 712102644-0071	Unit B1/Level 1st/ exterior West - grey exterior stucco	White Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
071-Base Coat 712102644-0071A	Unit B1/Level 1st/ exterior West - grey exterior stucco	Gray Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
072-Finish Coat 712102644-0072	Unit B1/Level 1st/ exterior S/W - grey exterior stucco	White Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
072-Base Coat 712102644-0072A	Unit B1/Level 1st/ exterior S/W - grey exterior stucco	Gray Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
073-Finish Coat 712102644-0073	Unit B1/Level 1st/ exterior East - grey exterior stucco	White Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
073-Base Coat 712102644-0073A	Unit B1/Level 1st/ exterior East - grey exterior stucco	Gray Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
074-Finish Coat 712102644-0074	Unit B1/Level 1st/ exterior N/E - grey exterior stucco	White Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
074-Base Coat 712102644-0074A	Unit B1/Level 1st/ exterior N/E - grey exterior stucco	Gray Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
075-Finish Coat 712102644-0075	Unit B1/Level 1st/ exterior N/W - grey exterior stucco	White Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
075-Base Coat 712102644-0075A	Unit B1/Level 1st/ exterior N/W - grey exterior stucco	Gray Non-Fibrous Homogeneous HA: ES1		100% Non-fibrous (Other)	None Detected
076 712102644-0076	Unit B1/Level Attic 1st/ North - brown barrier paper	Brown Fibrous Homogeneous HA: BP1	60% Cellulose	40% Non-fibrous (Other)	None Detected
077 712102644-0077	Unit B1/Level Attic 1st/ South - brown barrier paper	Brown Fibrous Homogeneous HA: BP1	60% Cellulose	40% Non-fibrous (Other)	None Detected
078 712102644-0078	Unit B1/Level Attic 1st/ East - brown barrier paper	Brown Fibrous Homogeneous HA: BP1	65% Cellulose	35% Non-fibrous (Other)	None Detected
079-VFT 712102644-0079	Unit B4/ Level R 4/ North West - beige 9 VFTw/ mastic	Gray/Beige Non-Fibrous Homogeneous HA: 9VFT1		94% Non-fibrous (Other)	6% Chrysotile

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
079-Mastic	Unit B4/ Level R 4/ North West - beige 9	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0079A	VFTw/ mastic		HA: 9VFT1		
080-VFT	Unit B4/ Level R 3/ center - beige 9	Gray/Beige Non-Fibrous Homogeneous		94% Non-fibrous (Other)	6% Chrysotile
712102644-0080	VFTw/black mastic		HA: 9VFT1		
080-Mastic	Unit B4/ Level R 3/ center - beige 9	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0080A	VFTw/black mastic		HA: 9VFT1		
081-VFT	Unit B4/ Level R 2/ S/E - beige 9	Gray/Beige Non-Fibrous Homogeneous		95% Non-fibrous (Other)	5% Chrysotile
712102644-0081	VFTw/black mastic		HA: 9VFT1		
081-Mastic	Unit B4/ Level R 2/ S/E - beige 9	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0081A	VFTw/black mastic		HA: 9VFT1		
082-Finish Coat	Unit B4/ Level R 4/ East - white/ grey smooth wall plaster w/ button board	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0082			HA: WPF1		
082-Base Coat	Unit B4/ Level R 4/ East - white/ grey smooth wall plaster w/ button board	White/Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0082A			HA: WPF1		
082-Drywall	Unit B4/ Level R 4/ East - white/ grey smooth wall plaster w/ button board	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
712102644-0082B			HA: WPF1		
083-Finish Coat	Unit B4/ Level R 1/ North - white/ grey smooth wall plaster w/ button board	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0083			HA: WPF1		
083-Base Coat	Unit B4/ Level R 1/ North - white/ grey smooth wall plaster w/ button board	Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0083A			HA: WPF1		
083-Drywall	Unit B4/ Level R 1/ North - white/ grey smooth wall plaster w/ button board	Brown/Pink Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
712102644-0083B			HA: WPF1		
084-Finish Coat	Unit B4/ Level R 3/ South - white/ grey smooth wall plaster w/ button board	Green/Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0084			HA: WPF1		
084-Base Coat	Unit B4/ Level R 3/ South - white/ grey smooth wall plaster w/ button board	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0084A					

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
			HA: WPF1		
084-Drywall 712102644-0084B	Unit B4/ Level R 3/ South - white/ grey smooth wall plaster w/ button board	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
			HA: WPF1		
085-Drywall 712102644-0085	Unit B4/ Level R 3/ East - white drywall with J/C	Brown/White Fibrous Heterogeneous	20% Cellulose 2% Glass	78% Non-fibrous (Other)	None Detected
			HA: WSR1		
085-Joint Compound 712102644-0085A	Unit B4/ Level R 3/ East - white drywall with J/C	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WSR1		
085-Mesh 712102644-0085B	Unit B4/ Level R 3/ East - white drywall with J/C	Yellow Fibrous Homogeneous	98% Glass	2% Non-fibrous (Other)	None Detected
			HA: WSR1		
086-Texture 712102644-0086	Unit B4/ Level R 3/ North - white drywall with J/C	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WSR1		
086-Drywall 712102644-0086A	Unit B4/ Level R 3/ North - white drywall with J/C	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
			HA: WSR1		
087-Texture 712102644-0087	Unit B4/ Level R 3/ East - white drywall with J/C	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WSR1		
087-Drywall 712102644-0087A	Unit B4/ Level R 3/ East - white drywall with J/C	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
			HA: WSR1		
088-Finish Coat 712102644-0088	Unit B4/ Level R 2/ N center - white/pink smooth ceiling plaster w/ button board	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: CP1		
088-Base Coat 712102644-0088A	Unit B4/ Level R 2/ N center - white/pink smooth ceiling plaster w/ button board	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: CP1		
088-Buttonboard 712102644-0088B	Unit B4/ Level R 2/ N center - white/pink smooth ceiling plaster w/ button board	Brown/Pink Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
			HA: CP1		
089-Finish Coat 712102644-0089	Unit B4/ Level R 3/ S/E - white/pink smooth ceiling plaster w/ button board	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: CP1		
089-Base Coat 712102644-0089A	Unit B4/ Level R 3/ S/E - white/pink smooth ceiling plaster w/ button board	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: CP1		

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
089-Buttonboard 712102644-0089B	Unit B4/ Level R 3/ S/E - white/pink smooth ceiling plaster w/ button board	Brown/Pink Fibrous Heterogeneous	20% Cellulose HA: CP1	80% Non-fibrous (Other)	None Detected
090-Finish Coat 712102644-0090	Unit B4/ Level R 5/ West - white/pink smooth ceiling plaster w/ button board	White Non-Fibrous Homogeneous		100% Non-fibrous (Other) HA: CP1	None Detected
090-Base Coat 712102644-0090A	Unit B4/ Level R 5/ West - white/pink smooth ceiling plaster w/ button board	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other) HA: CP1	None Detected
090-Buttonboard 712102644-0090B	Unit B4/ Level R 5/ West - white/pink smooth ceiling plaster w/ button board	Brown/White Fibrous Heterogeneous	20% Cellulose HA: CP1	80% Non-fibrous (Other)	None Detected
091-Shingle 1 712102644-0091	Unit B4/ Level Roof/ West - black/grey shingle roof- multi-layer	Brown/Gray/Black Fibrous Heterogeneous	15% Cellulose HA: RFM1	85% Non-fibrous (Other)	None Detected
091-Shingle 2 712102644-0091A	Unit B4/ Level Roof/ West - black/grey shingle roof- multi-layer	Brown/White/Black Fibrous Heterogeneous	15% Cellulose HA: RFM1	85% Non-fibrous (Other)	None Detected
091-Shingle 3 712102644-0091B	Unit B4/ Level Roof/ West - black/grey shingle roof- multi-layer	Gray/Black/Beige Fibrous Heterogeneous	15% Cellulose HA: RFM1	85% Non-fibrous (Other)	None Detected
091-Shingle 4 712102644-0091C	Unit B4/ Level Roof/ West - black/grey shingle roof- multi-layer	White/Black/Green Fibrous Heterogeneous	15% Cellulose HA: RFM1	85% Non-fibrous (Other)	None Detected
091-Shingle 5 712102644-0091D	Unit B4/ Level Roof/ West - black/grey shingle roof- multi-layer	Gray/White/Black Fibrous Heterogeneous	15% Cellulose 10% Glass HA: RFM1	75% Non-fibrous (Other)	None Detected
091-Thick Felt 712102644-0091E	Unit B4/ Level Roof/ West - black/grey shingle roof- multi-layer	Brown Fibrous Homogeneous	45% Cellulose HA: RFM1	55% Non-fibrous (Other)	None Detected
092-Shingle 1 712102644-0092	Unit B4/ Level Roof/ center - black/grey shingle roof- multi-layer	Gray/Black Fibrous Heterogeneous	15% Glass HA: RFM1	85% Non-fibrous (Other)	None Detected
092-Shingle 2 712102644-0092A	Unit B4/ Level Roof/ center - black/grey shingle roof- multi-layer	Gray/Black/Green Fibrous Heterogeneous	15% Cellulose	85% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
			HA: RFM1		
092-Shingle 3 712102644-0092B	Unit B4/ Level Roof/ center - black/grey shingle roof- multi-layer	Brown/Black/Beige Fibrous Heterogeneous	15% Glass	85% Non-fibrous (Other)	None Detected
			HA: RFM1		
092-Shingle 4 712102644-0092C	Unit B4/ Level Roof/ center - black/grey shingle roof- multi-layer	Brown/White/Black Fibrous Heterogeneous	15% Cellulose	85% Non-fibrous (Other)	None Detected
			HA: RFM1		
092-Shingle 5 712102644-0092D	Unit B4/ Level Roof/ center - black/grey shingle roof- multi-layer	Brown/Gray/Beige Fibrous Heterogeneous	15% Cellulose	85% Non-fibrous (Other)	None Detected
			HA: RFM1		
092-Thick Felt 712102644-0092E	Unit B4/ Level Roof/ center - black/grey shingle roof- multi-layer	Brown Fibrous Homogeneous	65% Cellulose	35% Non-fibrous (Other)	None Detected
			HA: RFM1		
093-Shingle 1 712102644-0093	Unit B4/ Level Roof/ S/E - black/grey shingle roof- multi-layer	Gray/Black Fibrous Heterogeneous	10% Cellulose	90% Non-fibrous (Other)	None Detected
			HA: RFM1		
093-Shingle 2 712102644-0093A	Unit B4/ Level Roof/ S/E - black/grey shingle roof- multi-layer	Brown/Black Non-Fibrous Homogeneous	10% Glass	90% Non-fibrous (Other)	None Detected
			HA: RFM1		
093-Shingle 3 712102644-0093B	Unit B4/ Level Roof/ S/E - black/grey shingle roof- multi-layer	Black Fibrous Homogeneous	8% Cellulose	92% Non-fibrous (Other)	None Detected
			HA: RFM1		
093-Thick Felt 712102644-0093C	Unit B4/ Level Roof/ S/E - black/grey shingle roof- multi-layer	Black Fibrous Homogeneous	65% Cellulose	35% Non-fibrous (Other)	None Detected
			HA: RFM1		
094 712102644-0094	Unit B4/ Level Roof/ S center - black penetration mastic	Black Non-Fibrous Homogeneous		92% Non-fibrous (Other)	8% Chrysotile
			HA: RPM1		
095 712102644-0095	Unit B4/ Level Roof/ South - black penetration mastic	Black Non-Fibrous Homogeneous		90% Non-fibrous (Other)	10% Chrysotile
			HA: RPM1		
096 712102644-0096	Unit B4/ Level Roof/ East - black penetration mastic	Black Non-Fibrous Homogeneous		92% Non-fibrous (Other)	8% Chrysotile
			HA: RPM1		
097 712102644-0097	Unit B4/ Level Roof/ East - transite vent grey transite vent pipe	Gray Fibrous Homogeneous		83% Non-fibrous (Other)	15% Chrysotile 2% Crocidolite
			HA: MISC1		

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos
			% Fibrous	% Non-Fibrous	
098 712102644-0098	Unit B4/ Level Roof/ West - white/grey window putty	Gray/White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WP1		
099 712102644-0099	Unit B4/ Ext/ N/W - white/grey window putty	White/Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WP1		
100 712102644-0100	Unit B4/ Ext/ East - white/grey window putty	White/Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WP1		
101-Finish Coat 712102644-0101	Unit B4/ Ext/ N/E - grey exterior stucco	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
101-Base Coat 712102644-0101A	Unit B4/ Ext/ N/E - grey exterior stucco	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
102 712102644-0102	Unit B4/ Ext/ N/W - grey exterior stucco	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
103-Finish Coat 712102644-0103	Unit B4/ Ext/ S/W - grey exterior stucco	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
103-Base Coat 712102644-0103A	Unit B4/ Ext/ S/W - grey exterior stucco	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: ES1		
104-Drywall 712102644-0104	Unit B5/ Level R 1/ West - white drywall w/ jc	Brown/White Fibrous Heterogeneous	20% Cellulose HA: WSR	80% Non-fibrous (Other)	None Detected
104-Joint Compound 712102644-0104A	Unit B5/ Level R 1/ West - white drywall w/ jc	White/Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WSR		
105-Drywall 712102644-0105	Unit B5/ Level R 1/ S/E - white drywall w/ jc <i>No joint compound present for analysis.</i>	Brown/Gray Fibrous Heterogeneous	20% Cellulose HA: WSR	80% Non-fibrous (Other)	None Detected
106-Drywall 712102644-0106	Unit B5/ Level R 2/ S/E - white drywall w/ jc	Brown/White Fibrous Heterogeneous	20% Cellulose HA: WSR	80% Non-fibrous (Other)	None Detected
106-Joint Compound 712102644-0106A	Unit B5/ Level R 2/ S/E - white drywall w/ jc	Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
			HA: WSR		
107-Vinyl Sheet Flooring 712102644-0107	Unit B5/ Level R 1/ N/E - brown w/ streaks 9VFT w/ black mastic	Brown/Black Fibrous Heterogeneous	20% Cellulose HA: 9VFT	80% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

ASB_PLM_0008_0001 - 1.78 Printed: 11/24/2021 1:53 PM

Page 14 of 19

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
107-Mastic 712102644-0107A	Unit B5/ Level R 1/ N/E - brown w/ streaks 9VFT w/ black mastic	Brown/Beige Non-Fibrous Homogeneous HA: 9VFT		100% Non-fibrous (Other)	None Detected
108-Vinyl Sheet Flooring 712102644-0108	Unit B5/ Level R 1/ N/W - brown w/ streaks 9VFT w/ black mastic	Brown/Black Fibrous Heterogeneous HA: 9VFT	20% Cellulose	80% Non-fibrous (Other)	None Detected
109-Vinyl Sheet Flooring 712102644-0109	Unit B5/ Level R 1/ S/E - brown w/ streaks 9VFT w/ black mastic	Brown/Black Fibrous Heterogeneous HA: 9VFT	20% Cellulose	80% Non-fibrous (Other)	None Detected
109-Mastic 712102644-0109A	Unit B5/ Level R 1/ S/E - brown w/ streaks 9VFT w/ black mastic	Brown/Beige Non-Fibrous Homogeneous HA: 9VFT		100% Non-fibrous (Other)	None Detected
110 712102644-0110	Unit B5/ Level roof/ N/W - grey/black rolled roof	Gray/Black Fibrous Heterogeneous HA: RFM	15% Synthetic	85% Non-fibrous (Other)	None Detected
111 712102644-0111	Unit B5/ Level roof/ N center - grey/black rolled roof	Gray/Black Fibrous Heterogeneous HA: RFM	15% Synthetic	85% Non-fibrous (Other)	None Detected
112 712102644-0112	Unit B5/ Level roof/ East - grey/black rolled roof	Gray/Black Fibrous Heterogeneous HA: RFM	10% Synthetic	90% Non-fibrous (Other)	None Detected
113 712102644-0113	Unit B5/ Level roof/ N/W - black roof seam mastic	Black Non-Fibrous Homogeneous HA: MISC	8% Cellulose	92% Non-fibrous (Other)	None Detected
114 712102644-0114	Unit B5/ Level roof/ N center - black roof seam mastic	Black Non-Fibrous Homogeneous HA: MISC	8% Cellulose	92% Non-fibrous (Other)	None Detected
115 712102644-0115	Unit B5/ Level roof/ East - black roof seam mastic	Black Non-Fibrous Homogeneous HA: MISC	8% Cellulose	92% Non-fibrous (Other)	None Detected
116 712102644-0116	Unit B5/ Level 1st/ N. West - grey concrete steps	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
117 712102644-0117	Unit B5/ Level 1st/ West - grey concrete steps	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
118 712102644-0118	Unit B5/ Level 1st/ West - grey concrete steps	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com**LA Testing Order:** 712102644**Customer ID:** 32CITA50F**Customer PO:****Project ID:** JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos
			% Fibrous	% Non-Fibrous	
119-Drywall 712102644-0119	Unit B6/ Level 1st/ S/E - white drywall ceiling w/ jc	Brown/White Fibrous Heterogeneous HA: WSR	20% Cellulose 2% Glass	78% Non-fibrous (Other)	None Detected
119-Joint Compound 712102644-0119A	Unit B6/ Level 1st/ S/E - white drywall ceiling w/ jc	White Non-Fibrous Homogeneous HA: WSR		100% Non-fibrous (Other)	None Detected
119-Mesh 712102644-0119B	Unit B6/ Level 1st/ S/E - white drywall ceiling w/ jc	Yellow Fibrous Homogeneous HA: WSR	98% Glass	2% Non-fibrous (Other)	None Detected
120-Drywall 712102644-0120	Unit B6/ Level 1st/ N/E - white drywall ceiling w/ jc	Brown/White Fibrous Heterogeneous HA: WSR	20% Cellulose 2% Glass	78% Non-fibrous (Other)	None Detected
120-Joint Compound 712102644-0120A	Unit B6/ Level 1st/ N/E - white drywall ceiling w/ jc	White Non-Fibrous Homogeneous HA: WSR		100% Non-fibrous (Other)	None Detected
120-Mesh 712102644-0120B	Unit B6/ Level 1st/ N/E - white drywall ceiling w/ jc	Yellow Fibrous Homogeneous HA: WSR	98% Glass	2% Non-fibrous (Other)	None Detected
121-Drywall 712102644-0121	Unit B6/ Level 1st/ West - white drywall ceiling w/ jc	Brown/White Fibrous Heterogeneous HA: WSR	20% Cellulose	80% Non-fibrous (Other)	None Detected
121-Joint Compound 712102644-0121A	Unit B6/ Level 1st/ West - white drywall ceiling w/ jc	White Non-Fibrous Homogeneous HA: WSR		100% Non-fibrous (Other)	None Detected
121-Mesh 712102644-0121B	Unit B6/ Level 1st/ West - white drywall ceiling w/ jc	Yellow Fibrous Homogeneous HA: WSR	98% Glass	2% Non-fibrous (Other)	None Detected
122-Drywall 712102644-0122	Unit B6/ Level 1st/ S/E - white drywall ceiling w/ jc	Brown/White Fibrous Heterogeneous HA: CSR	20% Cellulose 2% Glass	78% Non-fibrous (Other)	None Detected
122-Joint Compound 712102644-0122A	Unit B6/ Level 1st/ S/E - white drywall ceiling w/ jc	White Non-Fibrous Homogeneous HA: CSR		100% Non-fibrous (Other)	None Detected
122-Mesh 712102644-0122B	Unit B6/ Level 1st/ S/E - white drywall ceiling w/ jc	Yellow Fibrous Homogeneous HA: CSR	98% Synthetic	2% Non-fibrous (Other)	None Detected
123-Drywall 712102644-0123	Unit B6/ Level 1st/ N/E - white drywall ceiling w/ jc	Brown/White Fibrous Heterogeneous HA: CSR	20% Cellulose 2% Glass	78% Non-fibrous (Other)	None Detected
123-Joint Compound 712102644-0123A	Unit B6/ Level 1st/ N/E - white drywall ceiling w/ jc	White Non-Fibrous Homogeneous HA: CSR		100% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
123-Mesh	Unit B6/ Level 1st/ N/E - white drywall ceiling w/ jc	Yellow Fibrous Homogeneous	98% Glass	2% Non-fibrous (Other)	None Detected
712102644-0123B			HA: CSR		
124-Drywall	Unit B6/ Level 1st/ West - white drywall ceiling w/ jc	Brown/White Fibrous Heterogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
712102644-0124			HA: CSR		
124-Joint Compound	Unit B6/ Level 1st/ West - white drywall ceiling w/ jc	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0124A			HA: CSR		
124-Mesh	Unit B6/ Level 1st/ West - white drywall ceiling w/ jc	Yellow Fibrous Homogeneous	98% Glass	2% Non-fibrous (Other)	None Detected
712102644-0124B			HA: CSR		
125	Unit B6/ Level 1st/ West - brown barrier paper	Brown Fibrous Homogeneous	80% Cellulose	20% Non-fibrous (Other)	None Detected
712102644-0125			HA: BP		
126	Unit B6/ Level 1st/ North - brown barrier paper	Brown Fibrous Homogeneous	80% Cellulose	20% Non-fibrous (Other)	None Detected
712102644-0126			HA: BP		
127	Unit B6/ Level 1st/ South - brown barrier paper	Brown Fibrous Homogeneous	75% Cellulose	25% Non-fibrous (Other)	None Detected
712102644-0127			HA: BP		
128	Unit B2/ Level R 1/ N/W - grey concrete	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0128			HA: MISC		
129	Unit B2/ Level R 3/ center - grey concrete	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0129			HA: MISC		
130	Unit B2/ Level R 5/ S/W - grey concrete	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0130			HA: MISC		
131	Unit B1/ Level R 1/ middle - grey concrete	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0131			HA: MISC		
132	Unit B1/ Level R 4/ East - grey concrete	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0132			HA: MISC		
133	Unit B1/ Level R 6/ North - grey concrete	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0133			HA: MISC		
134	Ext. B/ Ext G./ South of steel building - grey concrete	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
712102644-0134			HA: MISC		

Initial report from: 11/24/2021 13:50:04

ASB_PLM_0008_0001 - 1.78 Printed: 11/24/2021 1:53 PM

Page 17 of 19

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
135 712102644-0135	Ext/ G/ S/W of steel building - grey concrete	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
136 712102644-0136	Ext/ G/ Parking area S/E - grey concrete	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
137 712102644-0137	Ext/ G/ East of bldg 1 - grey concrete	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
138 712102644-0138	Ext/ G/ North of building 1 - grey concrete	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
139-VFT 712102644-0139	Unit B4/ Level R 5/ N/W - wood pattern 12VFT w/ mastic	Brown/Gray Non-Fibrous Homogeneous HA: 12VFT		100% Non-fibrous (Other)	None Detected
139-Mastic 712102644-0139A	Unit B4/ Level R 5/ N/W - wood pattern 12VFT w/ mastic	Yellow Non-Fibrous Homogeneous HA: 12VFT		100% Non-fibrous (Other)	None Detected
140-VFT 712102644-0140	Unit B4/ Level R 5/ S/W - wood pattern 12VFT w/ mastic	Brown/Gray Non-Fibrous Homogeneous HA: 12VFT		100% Non-fibrous (Other)	None Detected
140-Mastic 712102644-0140A	Unit B4/ Level R 5/ S/W - wood pattern 12VFT w/ mastic	Yellow Non-Fibrous Homogeneous HA: 12VFT		100% Non-fibrous (Other)	None Detected
141-VFT 712102644-0141	Unit B4/ Level R 5/ S/E - wood pattern 12VFT w/ mastic	Brown/Gray Non-Fibrous Homogeneous HA: 12VFT		100% Non-fibrous (Other)	None Detected
141-Mastic / Leveling Compound 712102644-0141A Unable to separate	Unit B4/ Level R 5/ S/E - wood pattern 12VFT w/ mastic	Gray/Yellow Non-Fibrous Heterogeneous HA: 12VFT		100% Non-fibrous (Other)	None Detected
142 712102644-0142	Unit B4/ Level R 1/ S/E - grey concrete	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
143-Concrete 712102644-0143	Unit B4/ Level R 5/ North - grey concrete	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
143-Mastic 712102644-0143A	Unit B4/ Level R 5/ North - grey concrete	Beige Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected
144 712102644-0144	Unit B4/ Level R 4/ N/E - grey concrete	Gray Non-Fibrous Homogeneous HA: MISC		100% Non-fibrous (Other)	None Detected

Initial report from: 11/24/2021 13:50:04

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Tel/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102644

Customer ID: 32CITA50F

Customer PO:

Project ID: JS

Analyst(s)

David Flores (80)

Joel Paruli (48)

Tania Lopez (113)

Carolynn Tom, Laboratory Manager
or Other Approved Signatory

LA Testing maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by LA Testing. LA Testing bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore LA Testing recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by LA Testing South Pasadena, CA NVLAP Lab Code 200232-0, CA ELAP 2283

Initial report from: 11/24/2021 13:50:04

ASB_PLM_0008_0001 - 1.78 Printed: 11/24/2021 1:53 PM

Page 19 of 19

LA Testing

4335 E. Airport Dr. Unit 110 Ontario, CA 91761

Phone/Fax: (909) 295-6825 / (909) 295-6826

<http://www.LATesting.com> / InlandEmpireLab@latesting.com

LA Testing Order: 712102677

Customer ID: 32CITA50F

Customer PO:

Project ID:

Attention: Jack Samuels
Citadel Environmental Services, Inc.
2525 Cherry Avenue, Suite 105
Signal Hill, CA 90755

Phone: (818) 246-2707

Fax: (818) 246-3145

Received: 11/29/2021 8:30 AM

Analysis Date: 11/29/2021

Collected: 11/17/2021

Project: Reference: 712102644 - JS/0096.1039.0/ Dowling Fruit Orchard Demo- Level Survey

Test Report: Asbestos Analysis of Bulk Material via EPA 600/R-93/116. Quantitation using the 1,000 Point Count Procedure

Sample	Description	Appearance	Non-Asbestos	Asbestos
			% Fibrous	% Type
001-Finish Coat 712102677-0001	Unit B2/ Level 1/ Room 2 - white sand texture plaster walls	White/Yellow/Green Non-Fibrous Homogeneous	100.0% Non-fibrous (Other)	<0.1%Chrysotile

Analyst(s)

Rosa Mendoza (1)

Carolynn Tom, Laboratory Manager
or other approved signatory

LA Testing maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by LA Testing. LA Testing bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore LA Testing recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by LA Testing South Pasadena, CA NVLAP Lab Code 200232-0, CA ELAP 2283

Initial report from: 11/29/2021 11:12:44

ASB_PLMPC_0006_0003 Printed 11/29/2021 11:17:13AM

Page 1 of 1

C9 11/19
#712102644

CHAIN OF CUSTODY

CITADEL LOCATION:

 GLENDALE

Contact:
email:
1725 Victory Blvd.
Glendale, CA 91201
Phone: (818) 246-2707

 ORANGE COUNTY

Contact:
email:
151 Kalmus Drive
Costa Mesa, CA 92626
Phone: (714) 547-4301
Fax: (714) 547-4647

 SIGNAL HILL

Contact: Kier DeLeo
email: kdeleo@citadelehs.com
2525 Cherry Avenue, #105
Signal Hill, CA 90755
Phone: (818) 246-2707
Fax: (818) 246-3145

 VALENCIA

Contact:
email:
28159 Ave Stanford
Suite 224
Valencia, CA 91355
Phone: (818) 246-2707

PROJECT AND SAMPLE INFORMATION

PROJECT NUMBER: 0096.1039.0

PROJECT NAME: Dowling Fruit Orchard Demo-Level Survey

NUMBER OF SAMPLES: 144

SAMPLE NUMBERS: 001 - 144

TYPE OF SAMPLES (CIRCLE ONE):

AIR TAPE
 BULK SOIL

WATER WIPE
 ZEFON ~~ANDERSEN~~
 AIR-O-CELL PLATE OTHER

TYPE OF ANALYSIS:

Asbestos

Lead

Phase Contrast Microscopy
 PLM

Flame Atomic Absorption
 TTLC STLC TCLP

1st Positive Stop

Point Count 400 Point Count 1000 Point Count

Transmission Electron Microscopy

Qualitative Quantitative

Culturable Air

Culturable Samples

Andersen Fungi (genue ID, Aspergillus)

Quantitative Fungi-dust, bulk swab-1 medium

Andersen Bacteria

Quantitative Fungi-dust, bulk swab-3 media

Non-Culturable Air

Quantitative Bacteria-dust, bulk swab-1 medium

Non-Viable Spore Trap Slide

Quantitative Bacteria-dust, bulk, swab-3 media

Surface Samples

E.coli and Coliforms (MUG)

Surface Sample (direct examination)

Other

TURNAROUND TIME (CIRCLE ONE):

Rush 12 HOURS 24 HOURS 48 HOURS 1 WEEK
 3 DAYS 5 DAYS 5-10 DAYS OTHER 6- hour

REPORT RESULTS VIA (CIRCLE ALL THAT APPLY):

PHONE FAX WRITTEN REPORT PDF

NOTES/COMMENTS:

Special Projects "JS"

TRANSMITTAL RECORD:

WALKIN drop off

Relinquished By:

Date: 11/19/21

Time: 1424

Nelson Ortiz

Received By:

Date: 11/19

Time: 2:24 PM

Relinquished By:

Date:

Time:

Received By:

Date:

Time:

Relinquished By:

Date:

Time:

Received By:

Date:

Time:

Note: If relinquising samples to a lab drop box or a shipper (Fedex, etc) you must fill out the Received by with the entity, date, and time.

LABORATORY INFORMATION:

NAME: _____

LOCATION: _____

DISPOSITION OF SAMPLES:

BULK SAMPLING DATA FORM

#712102644

01/19

PROJECT NO.:	J6.1039.0						DATE:	1	1	1	7	2	PAGE
CLIENT:	Trammel Crow Company												1
PROJECT ID:	Dowling Fruit Orchard Demo-Level Survey						INSPECTOR(S):	WELTMAN/N.ORTIZ			OF		
SITE ADDRESS:	38021 CA-60, Beaumont CA 92223						CSST/CAC NO:	17-5942	15-5586	1			
HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION			BULK SAMPLE LOCATION			QUANTITY		FRIABILITY	MATERIAL CONDITION	DAMAGE TYPE	
HANo.		COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS					
WPF1	001	WHITE SAND TEXTURE	PLASTER WALLS	B2	1	Room 2							
	002					Room 2							
	003					Room 1							
VFT1	004	WOOD PATTERN	12x12 VFT			Room 1							
	005												
	006												
CP1	007	SMOOTH WHITE	PLASTER CEILING			Room 2							
	008												
	009												
FCM1	010	YELLOW	CARPET MASTIC			Room 2							
	011												
	012					Room 1							
MISCI	013	BLACK	MOISTURE BARRIER PAPER			EAST							
	014					SOUTH							

BULK SAMPLING DATA FORM

#712102644

GULKA

PROJECT NO.:		006.1039.0		DATE:		1	1	1	7	21	PAGE	
CLIENT:		Trammel Crow Company		INSPECTOR(S):		WELTMAN / E.N. ORTIZ		OF		1		
PROJECT ID:		Dowling Fruit Orchard Demo-Level Survey		CSST/CAC NO:		17-5942		15-5586		1		
SITE ADDRESS:	38021 CA-60, Beaumont CA 92223		HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION	BULK SAMPLE LOCATION			QUANTITY			
HA NO.		COLOR/TEXTURE/PATTERN		MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS	FRIABILITY	MATERIAL CONDITION	DAMAGE TYPE
MISCL	015	BLACK		MOISTURE BARRIER PAPER	B2	1	EAST					
RPM1	016	BLACK		ROOF MASTIC			SCREW HEADS + SEAMS NE					
	017						N					
	018						E					
RPM2	019	SILVER		ROOF MASTIC								
	020											
	021											
RPM1	022	WHITE	GREY AND FINISH	STUCCO EXTERIOR			NE					
ES1	023						NW					
	024						W CENTER					
ES2	025	GREY	TROWEL FINISH	STUCCO EXTERIOR			EAST WALL NORTH					
	026						MIDDLE					
	027						SOUTH					
	028											

BULK SAMPLE DATA FORM

#712102644 G11/18

PROJECT NO.:	J6.1039.0						DATE:	11/17/21	PAGE		
CLIENT:	Trammel Crow Company								1		
PROJECT ID:	Dowling Fruit Orchard Demo-Level Survey						INSPECTOR(S):	WELTMAN / N. ORTIZ	OF		
SITE ADDRESS:	38021 CA-60, Beaumont CA 92223						CSST/CAC NO:	17-5942 15-5586	1		
HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION		BULK SAMPLE LOCATION			QUANTITY		FRIABILITY	MATERIAL CONDITION	DAMAGE TYPE
HA NO.		COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS			
ESS	028	GREY SMOOTH FINISH	STUCCO EXTERIOR	B2	1	SE					
	029					S					
	030					SW					
RPM	031	WHITE	ROOF MASTIC	B2	1	EAST ROOF SEAM					
	032					LOWER EAST ROOF SEAM					
	033					UPPER EAST ROOF SEAM					
WPF	034	WHITE SMOOTH	WALL PLASTER	B1	81	ROOM 8 N					
	035					ROOM 5 SE					
	036					ROOM 8					
CPI	037	WHITE SMOOTH	CEILING PLASTER	B1	1	* ROOM 5 S					
	038					ROOM 5 E					
	039					RM 5 CENTER					
CP2	040	WHITE TROWELLED				RM 1 S					
	041					RM 1 W					

BULK SAMPLE DATA FORM

#712102644 07/19

PROJECT NO.:	J6.1039.0						DATE:	1 1 1 8 21	PAGE		
CLIENT:	Trammel Crow Company								1		
PROJECT ID:	Dowling Fruit Orchard Demo-Level Survey						INSPECTOR(S):	WELTMAN/N.ORTIZ	OF		
SITE ADDRESS:	38021 CA-60, Beaumont CA 92223						CSST/CAC NO:	17-5942 15-5586	1		
HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION		BULK SAMPLE LOCATION			QUANTITY		FRIABILITY	MATERIAL CONDITION	DAMAGE TYPE
HA NO.		COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS			
CP2	042	WHITE TROWELLED	CEILING PLASTER	B1	1	ROOM 1 N					
WPF2	043	WHITE TROWELLED	WALL PLASTER			Room 1 N					
	044										
	045										
MISC1	046	BLACK	MASTIC FLOOR			RM 1 UNDER DISPLAY RACKS W					
	047										
	048										
CSR1	049	WHITE	DRY WALL CEILING			RM 8 UNDER DISPLAY RACKS CENTER					
	050					RM 5 UNDER DISPLAY RACKS E					
	051					Room 4 S					
FM1	052	Grey Rolled Roof	Rolled Roof Membrane	B1	Roof	N/E					
FM1	053					Center					
FM1	054					S/W					
RPM	055	Black/Gray	Pitch pocket Mastic	B1	Roof	West					

PROJECT NO.: 006.1039.0
 CLIENT: Trammel Crow Company
 PROJECT ID: Dowling Fruit Orchard Demo-Level Survey
 SITE ADDRESS: 38021 CA-60, Beaumont CA 92223

DATE: 1 1 19 21 PAGE 1
 INSPECTOR(S): Weltman / N. Ortiz OF 1
 CSST/CAC NO: 17-5942 15-5586

HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION		BULK SAMPLE LOCATION			QUANTITY		FRIABILITY	MATERIAL CONDITION	DAMAGE TYPE	
		HA NO.	COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS			
RPM	54		Black	rolled Roof Penetration mastic	Bl	Roof	N/W			2	6	NA
RPM	57		Black				West center					
RPM	58		Black				West					
MISC	59	2	Black/gray	rolled Roof Seam mastic	Bl	Roof	N/E					
MISC	60	2	Black/gray				Center					
MISC	61	2	Black/gray				N/W					
RPM	62	2	Black/gray	Shingled roof (pitched) Roof membrane	Bl	Roof	S/E					
RPM	63	2	Black/gray				Center					
RPM	64	2	Black/gray				N/W					
MISC	65	3	Black/silver	Mastic at brace	Bl	Roof	S/W					
MISC	66	3	Black/silver	Mastic at brace								
MISC	67	3	Black/silver	Mastic at brace			W. Center					
MISC	68	4	Black	Mastic @ brace stand	Bl	Roof	N-West					
MISC	69	4	Black				West					

BULK SAMPLE DATA FORM

#712102644 GRILLIS

#712102644

Gulf

PROJECT NO.:	006.1039.0					DATE:	1	1	19	21	PAGE	
CLIENT:	Trammel Crow Company										1	
PROJECT ID:	Dowling Fruit Orchard Demo-Level Survey					INSPECTOR(S):	Waltman / Noritz					
SITE ADDRESS:	38021 CA-60, Beaumont CA 92223					CSST/CAC NO:	17-5942	15-5586			OF	
HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION			BULK SAMPLE LOCATION			QUANTITY		FRIABILITY	MATERIAL CONDITION	DAMAGE TYPE
HA NO.		COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS				
WPF	B 2	white/grey	smooth wall plaster w/ gypsum board	BY	R-4	East				N	G	NA
WPF	B 3				R-1	North						
WPF	B 4				R-3	South						
WSR	B 5	white	drywall with J/C	BY	R-3	East						
WSR	B 6	white	drywall with J/C		R-3	North						
WSR	B 7	white	drywall with J/C		R-3	East						
CP	B 8	white/pink	smooth ceiling plaster w/ gypsum board	BY	R-2	N. center						
CP	B 9				R-3	S/E.						
CP	B 0				R-5	West						
PFM	B 1	black/grey	single coat - multi-layer	BY	Roof	West						
PFM	B 2					center						
PFM	B 3					S/E						

~~#71210264~~ ^{Gen 19}

CITADEL EHS
Safety. Health. Strength.

OrderID: 712102644

PROJECT NO.:	006.1039.0				DATE:	1/1/19	1
CLIENT:	Trammel Crow Company						
PROJECT ID:	Dowling Fruit Orchard Demo-Level Survey				INSPECTOR(S):	Weltman / N.ORTIZ	OF
SITE ADDRESS:	38021 CA-60, Beaumont CA 92223				CSST/CAC NO:	17-5442	15-5586
HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION		BULK SAMPLE LOCATION	QUANTITY		
HA NO.		COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO. UNITS
WSR	104	white	drywall w/ SC	BS	R-1	West	
WSR	105	white	drywall w/ SC		R-1	SE	
WSR	106	white	drywall w/ SC		R-2	SE	
QVF	107	Brown w/ streaks	QVF w/ black mastic	BS	R1	NE	
QVF	108	Brown w/ streaks			R4	NW	
QVF	109	Brown w/ streaks			R4	SE	
RFM	110	Grey/Black	Rolled Roof	BS	Roof	N-W	
RFM	111	Grey/Black				N. Center	
RFM	112	Grey/Black				East	
MSC	113	Black	Roof seam mastic	BS	Roof	N-W	
MSC	114	Black				N. Center	
MSC	115	Black				East	

#712102644 G1115

BULK SAMPLING

DATA FORM

PROJECT NO.:		0096.1039.0						DATE: 11/19/21		PAGE 1
CLIENT:		Trammel Crow Company						INSPECTOR(S): Weltman / NODRZ		OF
PROJECT ID:		Dowling Fruit Orchard Demo-Level Survey						CSST/CAC NO: 175942 15-5586		1
SITE ADDRESS:		38021 CA-60, Beaumont CA 92223								
HA TYPE	SAMPLE NO.	MATERIAL DESCRIPTION			BULK SAMPLE LOCATION			QUANTITY		FRIABILITY
HA NO.		COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS		
MISC	116	grey	Concrete steps	B5	1st	N-west				✓
MISC	117	grey	Concrete steps	1	1	west				✓
MISC	118	grey	Concrete steps	1	1	west				✓
WSR	119	white	drywall wall w/ sc	B6	1st	SE				
WSR	120	white		1	1	N/E				
WSR	121	white		1	1	west				
CSR	122	white	drywall ceiling w/ sc	1	1	SE				
CSR	123	white		1	1	N/E				
CSR	124	white		1	1	west				
BP	125	Brown	barrier paper	B6	1st	west				
BP	126	Brown		1	1	North				
BP	127	Brown		1	1	South				

BULK SAMI DATA FORM

#712102644 (7/11)F

PROJECT NO.: 006.1039.0
 CLIENT: Trammel Crow Company
 PROJECT ID: Dowling Fruit Orchard Demo-Level Survey
 SITE ADDRESS: 38021 CA-60, Beaumont CA 92223

DATE: 1/1/19 F41 PAGE 1
 INSPECTOR(S): Weltman / N. Orriz OF 1
 CSST/CAC NO: 175942 / 150386

HA TYPE HA NO.	SAMPLE NO.	MATERIAL DESCRIPTION		BULK SAMPLE LOCATION			QUANTITY		FRIABILITY	MATERIAL CONDITION	DAMAGE TYPE
		COLOR/TEXTURE/PATTERN	MATERIAL TYPE	UNIT	LEVEL	AREA/LOCATION	NO.	UNITS			
MISC 1	1 2 8	grey	Concrete	B2	P1	N/W			N	G	NA
MISC 1	1 2 9	grey	Concrete	B2	R3	center			1	1	1
MISC 1	1 3 0	grey	Concrete	B2	R5	S/E			1	1	1
MISC 1	1 3 1	grey	concrete	B1	P1	Middle			1	1	1
MISC 1	1 3 2	grey	Concrete	B1	R4	East			1	1	1
MISC 1	1 3 3	grey	Concrete	B1	R6	North			1	1	1
MISC 1	1 3 4	grey	Concrete	ext. B	ext. G.	South of steel building			1	1	1
MISC 1	1 3 5	gray	Concrete	ext.	G.	S/W of steel building			1	1	1
MISC 1	1 3 6	grey	Concrete	ext.	G	Parking area S/E			1	1	1
MISC 1	1 3 7	grey	Concrete	ext.	G	East of building 1			1	1	1
MISC 1	1 3 8	Grey	Concrete	ext.	G	North of building 1			1	1	1
12VFT 1	1 3 9	Wood pattern	12VFT w/ mastic	B4	R5	N/W			1	1	1
12VFT 1	1 4 0			B4	R5	S/W			1	1	1
12VFT 1	1 4 1			B4	R5	S/E			1	1	1

BULK SAMPLE DATA FORM

~~#712102644~~ C7 11/19

CITADEL EH
Safety. Reliability. Efficiency.

OrderID: 712102644

Appendix D

Table 3.0 - Lead XRF SA Results

TABLE 3.0 - XRF SA RESULTS
 DEMOLITION LEVEL ERM SURVEY
 DOWLING FRUIT ORCHARD SITE
 38021 CA-60
 BEAUMONT, CALIFORNIA 92223

Reading No	Time	Type	Units	Sequence	Component	Substrate	Side	Condition	Color	Site	Inspector	Floor	Room	MISC	Results	Action Level	Lead Result (mg/cm ²)
1	11/17/2021 12:30	ShutterCal	cps	FINAL													2.56
2	11/17/2021 12:41	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1
3	11/17/2021 12:43	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1.1
4	11/17/2021 12:44	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1
5	11/17/2021 12:45	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1
6	11/17/2021 13:56	PAINT	mg / cm ²	FINAL	DOOR	METAL	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	Negative	0.7	0
7	11/17/2021 13:57	PAINT	mg / cm ²	FINAL	DOOR	METAL	N	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	Negative	0.7	0
8	11/17/2021 13:57	PAINT	mg / cm ²	FINAL	DOOR FRAME	METAL	N	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	Negative	0.7	0
9	11/17/2021 13:57	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	LCP	0.7	0.02
10	11/17/2021 13:58	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	Negative	0.7	0
11	11/17/2021 13:58	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	Negative	0.7	0
12	11/17/2021 13:59	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	LCP	0.7	0.27
13	11/17/2021 13:59	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	LCP	0.7	0.08
14	11/17/2021 14:01	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.12
15	11/17/2021 14:02	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.04
16	11/17/2021 14:02	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.01
17	11/17/2021 14:03	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.04
18	11/17/2021 14:05	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 2	Negative	0.7	0
19	11/17/2021 14:06	PAINT	mg / cm ²	FINAL	DOOR	METAL	W	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 2	LCP	0.7	0.02
20	11/17/2021 14:06	PAINT	mg / cm ²	FINAL	DOOR FRAME	METAL	W	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 2	Negative	0.7	0
21	11/17/2021 14:07	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 2	Negative	0.7	0
22	11/17/2021 14:10	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 2	Negative	0.7	0
23	11/17/2021 14:11	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 2	Negative	0.7	0
24	11/17/2021 14:15	PAINT	mg / cm ²	FINAL	RAFTER	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 2	Negative	0.7	0
25	11/17/2021 14:15	PAINT	mg / cm ²	FINAL	HEADER	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 2	Negative	0.7	0
26	11/17/2021 14:16	PAINT	mg / cm ²	FINAL	DOOR	METAL	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	Negative	0.7	0
27	11/17/2021 14:16	PAINT	mg / cm ²	FINAL	DOOR FRAME	METAL	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	LCP	0.7	0.04
28	11/17/2021 14:17	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	Negative	0.7	0
29	11/17/2021 14:18	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	LCP	0.7	0.01
30	11/17/2021 14:18	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	LCP	0.7	0.14
31	11/17/2021 14:20	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	Negative	0.7	0
32	11/17/2021 14:21	PAINT	mg / cm ²	FINAL	DOOR	WOOD	E	POOR	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	Negative	0.7	0
33	11/17/2021 14:21	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	Negative	0.7	0
34	11/17/2021 14:21	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	Negative	0.7	0
35	11/17/2021 14:22	PAINT	mg / cm ²	FINAL	COLUMN	METAL	N	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	Negative	0.7	0
37	11/17/2021 14:22	PAINT	mg / cm ²	FINAL	BASEBOARD	CERAMIC	N	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	LCP	0.7	0.03
38	11/17/2021 14:22	PAINT	mg / cm ²	FINAL	TOILET	CERAMIC	N	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	LCP	0.7	0.01
39	11/17/2021 14:23	PAINT	mg / cm ²	FINAL	SINK	CERAMIC	W	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	LCP	0.7	0.09
40	11/17/2021 14:25	PAINT	mg / cm ²	FINAL	FACIA	WOOD	E	POOR	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	Negative	0.7	0
41	11/17/2021 14:26	PAINT	mg / cm ²	FINAL	RAFTER	WOOD	E	PEELING	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	Negative	0.7	0
42	11/17/2021 14:26	PAINT	mg / cm ²	FINAL	HEADER	WOOD	E	PEELING	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	Negative	0.7	0
43	11/17/2021 14:27	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	PEELING	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	Negative	0.7	0
44	11/17/2021 14:28	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	PEELING	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	Negative	0.7	0
45	11/17/2021 14:28	PAINT	mg / cm ²	FINAL	POSTS	CONCRETE	W	PEELING	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	Negative	0.7	0
46	11/17/2021 14:30	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	Negative	0.7	0
47	11/17/2021 14:33	PAINT	mg / cm ²	FINAL	WINDOW	METAL	N	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	LCP	0.7	0.01
48	11/17/2021 16:40	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1.1
49	11/17/2021 16:41	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1
50	11/17/2021 16:42	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1
51	11/17/2021 17:04	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	Negative	0.7	0
52	11/17/2021 17:06	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	Negative	0.7	0
53	11/17/2021 17:06	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	Negative	0.7	0
54	11/17/2021 17:07	PAINT	mg / cm ²	FINAL	HEADER	WOOD	CENTER	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	LCP	0.7	0.07
55	11/17/2021 17:07	PAINT	mg / cm ²	FINAL	POST	METAL	CENTER	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	LCP	0.7	0.01
56	11/17/2021 17:08	PAINT	mg / cm ²	FINAL	DOOR	METAL	W	INTACT	SILVER	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	Negative	0.7	0
57	11/17/2021 17:08	PAINT	mg / cm ²	FINAL	DOOR FRAME	METAL	W	INTACT	SILVER	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	Negative	0.7	0
58	11/17/2021 17:09	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	Negative	0.7	0
59	11/17/2021 17:10	PAINT	mg / cm ²	FINAL	DOOR	WOOD	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 1	Negative	0.7	0
60	11/17/2021 17:10	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 1	Negative	0.7	0
61	11/17/2021 17:11	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 1	Negative	0.7	0
62	11/17/2021 17:11	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 1	Negative	0.7	0
63	11/17/2021 17:11	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 1	Negative	0.7	0
64	11/17/2021 17:12	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 1	Negative	0.7	0

TABLE 3.0 - XRF SA RESULTS
 DEMOLITION LEVEL ERM SURVEY
 DOWLING FRUIT ORCHARD SITE
 38021 CA-60
 BEAUMONT, CALIFORNIA 92223

Reading No	Time	Type	Units	Sequence	Component	Substrate	Side	Condition	Color	Site	Inspector	Floor	Room	MISC	Results	Action Level	Lead Result (mg/cm ²)	
65	11/17/2021 17:13	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 1	Negative	0.7	0	
66	11/17/2021 17:14	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 1	Negative	0.7	0	
67	11/17/2021 17:14	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 1	Negative	0.7	0	
68	11/17/2021 17:14	PAINT	mg / cm ²	FINAL	DOOR	WOOD	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 1	Negative	0.7	0	
69	11/17/2021 17:15	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 1	Negative	0.7	0	
70	11/17/2021 17:15	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 1	Negative	0.7	0	
71	11/17/2021 17:15	PAINT	mg / cm ²	FINAL	DOOR	WOOD	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 1	Negative	0.7	0	
72	11/17/2021 17:16	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
73	11/17/2021 17:16	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
74	11/17/2021 17:17	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
75	11/17/2021 17:17	PAINT	mg / cm ²	FINAL	WALL	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
76	11/17/2021 17:18	PAINT	mg / cm ²	FINAL	WALL	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
77	11/17/2021 17:18	PAINT	mg / cm ²	FINAL	DOOR	METAL	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
78	11/17/2021 17:18	PAINT	mg / cm ²	FINAL	DOOR FRAME	METAL	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
79	11/17/2021 17:19	PAINT	mg / cm ²	FINAL	POST	METAL	CENTER	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	LCP	0.7	0.02	
80	11/17/2021 17:19	PAINT	mg / cm ²	FINAL	HEADER	WOOD	CENTER	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	Negative	0.7	0	
81	11/17/2021 17:20	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
82	11/17/2021 17:20	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
83	11/17/2021 17:21	PAINT	mg / cm ²	FINAL	CEILING	DRYWALL	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
84	11/17/2021 17:21	PAINT	mg / cm ²	FINAL	FLOOR	CONCRETE	N	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
85	11/17/2021 17:22	PAINT	mg / cm ²	FINAL	BASEBOARD	CERAMIC	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	LCP	0.7	0.4	
86	11/17/2021 17:22	PAINT	mg / cm ²	FINAL	DOOR	WOOD	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
87	11/17/2021 17:23	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
88	11/17/2021 17:23	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
89	11/17/2021 17:23	PAINT	mg / cm ²	FINAL	DOOR	WOOD	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	Negative	0.7	0	
90	11/17/2021 17:24	PAINT	mg / cm ²	FINAL	TRIM	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	EXT	BUILDING 1	Negative	0.7	0		
91	11/17/2021 17:24	PAINT	mg / cm ²	FINAL	TRIM	WOOD	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	EXT	BUILDING 1	Negative	0.7	0		
92	11/17/2021 17:25	PAINT	mg / cm ²	FINAL	FACIA	WOOD	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	EXT	BUILDING 1	Negative	0.7	0		
93	11/17/2021 17:25	PAINT	mg / cm ²	FINAL	EAVE	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	EXT	BUILDING 1	Negative	0.7	0		
95	11/17/2021 17:25	PAINT	mg / cm ²	FINAL	WALL	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	EXT	BUILDING 1	Negative	0.7	0		
97	11/17/2021 17:26	PAINT	mg / cm ²	FINAL	WALL	STUCCO	SW	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	EXT	BUILDING 1	Negative	0.7	0		
98	11/17/2021 17:27	PAINT	mg / cm ²	FINAL	POST	WOOD	SW	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
99	11/17/2021 17:27	PAINT	mg / cm ²	FINAL	DOOR	WOOD	SW	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
100	11/17/2021 17:27	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	SW	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
101	11/17/2021 17:28	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
102	11/17/2021 17:28	PAINT	mg / cm ²	FINAL	POST	WOOD	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
103	11/17/2021 17:29	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
104	11/17/2021 17:30	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
105	11/17/2021 17:30	PAINT	mg / cm ²	FINAL	WALL	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
106	11/17/2021 17:31	PAINT	mg / cm ²	FINAL	WINDOW TRIM	WOOD	E	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
107	11/17/2021 17:31	PAINT	mg / cm ²	FINAL	WALL	PLASTER	NE	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
108	11/17/2021 17:32	PAINT	mg / cm ²	FINAL	CONDUIT	METAL	NE	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 1	Negative	0.7	0	
109	11/17/2021 17:51	PAINT	mg / cm ²	FINAL				CALIBRATE							Positive	0.7	1	
110	11/17/2021 17:52	PAINT	mg / cm ²	FINAL				CALIBRATE							Positive	0.7	1	
111	11/17/2021 17:53	PAINT	mg / cm ²	FINAL				CALIBRATE							Positive	0.7	1	
112	11/19/2021 13:04	ShutterCal	cps	FINAL													2.38	
113	11/19/2021 13:06	PAINT	mg / cm ²	FINAL				CALIBRATE								Positive	0.7	1
114	11/19/2021 13:07	PAINT	mg / cm ²	FINAL				CALIBRATE								Positive	0.7	1.1
115	11/19/2021 13:08	PAINT	mg / cm ²	FINAL				CALIBRATE								Positive	0.7	1.1
116	11/19/2021 13:14	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 4	Negative	0.7	0	
117	11/19/2021 13:14	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 4	Negative	0.7	<LOD	
118	11/19/2021 13:15	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 4	LCP	0.7	0.02	
119	11/19/2021 13:16	PAINT	mg / cm ²	FINAL	DOOR	WOOD	N	INTACT	WOOD	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 4	Negative	0.7	0	
120	11/19/2021 13:17	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 4	LCP	0.7	0.6	
121	11/19/2021 13:18	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LBP	0.7	1.2	
122	11/19/2021 13:18	PAINT	mg / cm ²	FINAL	DOOR	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.5	
123	11/19/2021 13:19	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LBP	0.7	0.9	
124	11/19/2021 13:19	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.4	
125	11/19/2021 13:20	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.4	
126	11/19/2021 13:20	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.5	
127	11/19/2021 13:21	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	Negative	0.7	<LOD	
128	11/19/2021 13:21	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.5	
129	11/19/2021 13:21	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LBP	0.7	1.2	

TABLE 3.0 - XRF SA RESULTS
 DEMOLITION LEVEL ERM SURVEY
 DOWLING FRUIT ORCHARD SITE
 38021 CA-60
 BEAUMONT, CALIFORNIA 92223

Reading No	Time	Type	Units	Sequence	Component	Substrate	Side	Condition	Color	Site	Inspector	Floor	Room	MISC	Results	Action Level	Lead Result (mg/cm ²)
130	11/19/2021 13:23	PAINT	mg / cm ²	FINAL	DOOR	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	LBP	0.7	0.8
131	11/19/2021 13:24	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	LBP	0.7	0.8
132	11/19/2021 13:24	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	LCP	0.7	0.29
133	11/19/2021 13:25	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	Negative	0.7	0
134	11/19/2021 13:25	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	W	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	Negative	0.7	<LOD
135	11/19/2021 13:27	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	Negative	0.7	0
136	11/19/2021 13:27	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LCP	0.7	0.01
137	11/19/2021 13:27	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	Negative	0.7	0
138	11/19/2021 13:28	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LCP	0.7	0.4
139	11/19/2021 13:28	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LCP	0.7	0.4
140	11/19/2021 13:29	PAINT	mg / cm ²	FINAL	DOOR	WOOD	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LBP	0.7	0.8
141	11/19/2021 13:29	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LBP	0.7	1.1
142	11/19/2021 13:30	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 4	LCP	0.7	0.3
143	11/19/2021 13:31	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 4	LCP	0.7	0.6
144	11/19/2021 13:32	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 4	LBP	0.7	0.7
145	11/19/2021 13:34	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LBP	0.7	0.7
146	11/19/2021 13:34	PAINT	mg / cm ²	FINAL	DOOR	WOOD	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LBP	0.7	2.8
147	11/19/2021 13:41	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.5
148	11/19/2021 13:41	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.3
149	11/19/2021 13:42	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.4
150	11/19/2021 13:42	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.5
152	11/19/2021 13:43	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	Negative	0.7	<LOD
153	11/19/2021 13:43	PAINT	mg / cm ²	FINAL	TUB	METAL	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LBP	0.7	5.1
154	11/19/2021 13:44	PAINT	mg / cm ²	FINAL	TOILET	CERAMIC	NE	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	Negative	0.7	0
155	11/19/2021 13:47	PAINT	mg / cm ²	FINAL	WALL	STUCCO	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	LCP	0.7	0.5
156	11/19/2021 13:48	PAINT	mg / cm ²	FINAL	WALL	STUCCO	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
157	11/19/2021 13:49	PAINT	mg / cm ²	FINAL	WALL	STUCCO	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
158	11/19/2021 13:49	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
159	11/19/2021 13:50	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
160	11/19/2021 13:50	PAINT	mg / cm ²	FINAL	WALL	STUCCO	E	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
161	11/19/2021 13:51	PAINT	mg / cm ²	FINAL	RAFTER	WOOD	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
162	11/19/2021 13:52	PAINT	mg / cm ²	FINAL	EAVES	WOOD	N	PEELING	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
163	11/19/2021 13:55	PAINT	mg / cm ²	FINAL	WALL	STUCCO	N	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
164	11/19/2021 13:55	PAINT	mg / cm ²	FINAL	WALL	STUCCO	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	Negative	0.7	0
165	11/19/2021 14:01	PAINT	mg / cm ²	FINAL	WALL	METAL	W	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 5	Negative	0.7	0
166	11/19/2021 14:02	PAINT	mg / cm ²	FINAL	WALL	METAL	S	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 5	Negative	0.7	0
167	11/19/2021 14:02	PAINT	mg / cm ²	FINAL	WALL	METAL	N	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 5	Negative	0.7	0
168	11/19/2021 14:03	PAINT	mg / cm ²	FINAL	WALL	METAL	E	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 5	Negative	0.7	0
170	11/19/2021 14:03	PAINT	mg / cm ²	FINAL	WALL TRIM	METAL	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 5	Negative	0.7	0
171	11/19/2021 14:04	PAINT	mg / cm ²	FINAL	WALL TRIM	METAL	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 5	Negative	0.7	0
172	11/19/2021 14:04	PAINT	mg / cm ²	FINAL	WALL TRIM	METAL	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 5	Negative	0.7	0
173	11/19/2021 14:08	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	W	INTACT	TAN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 5	Negative	0.7	0
174	11/19/2021 14:08	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	N	INTACT	TAN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 5	Negative	0.7	0
175	11/19/2021 14:08	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	E	INTACT	TAN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 5	Negative	0.7	0
176	11/19/2021 14:09	PAINT	mg / cm ²	FINAL	CEILING	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 5	Negative	0.7	0
177	11/19/2021 14:09	PAINT	mg / cm ²	FINAL	CEILING	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 5	Negative	0.7	0
178	11/19/2021 14:10	PAINT	mg / cm ²	FINAL	WALL	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 5	Negative	0.7	0
179	11/19/2021 14:10	PAINT	mg / cm ²	FINAL	WALL	WOOD	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 5	Negative	0.7	0
180	11/19/2021 14:11	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 5	Negative	0.7	0
181	11/19/2021 14:11	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 5	Negative	0.7	0
182	11/19/2021 14:12	PAINT	mg / cm ²	FINAL	WALL	WOOD	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 5	Negative	0.7	0
183	11/19/2021 14:12	PAINT	mg / cm ²	FINAL	CEILING	DRYWALL	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 5	Negative	0.7	0
184	11/19/2021 14:13	PAINT	mg / cm ²	FINAL	CEILING	DRYWALL	CENTER	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 5	Negative	0.7	0
185	11/19/2021 14:14	PAINT	mg / cm ²	FINAL	WALL	WOOD	S	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 5	Negative	0.7	0
186	11/19/2021 14:14	PAINT	mg / cm ²	FINAL	WALL	WOOD	W	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 5	Negative	0.7	0
187	11/19/2021 14:17	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	W	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 6	Negative	0.7	0
188	11/19/2021 14:17	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	N	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 6	Negative	0.7	0
189	11/19/2021 14:18	PAINT	mg / cm ²	FINAL	WALL	DRYWALL	S	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 6	Negative	0.7	0
190	11/19/2021 14:18	PAINT	mg / cm ²	FINAL	CEILING	DRYWALL	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 6	Negative	0.7	0
191	11/19/2021 14:19	PAINT	mg / cm ²	FINAL	STAIRS	WOOD	E	INTACT	RED	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 6	Negative	0.7	0
192	11/19/2021 14:19	PAINT	mg / cm ²	FINAL	DECK	WOOD	E	INTACT	RED	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 6	Negative	0.7	0
193	11/19/2021 14:19	PAINT	mg / cm ²	FINAL	POST	WOOD	E	INTACT	RED	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 6	Negative	0.7	0
194	11/19/2021 14:20	PAINT	mg / cm ²	FINAL	HANDRAIL	WOOD	E	INTACT	RED	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 6	Negative	0.7	0

TABLE 3.0 - XRF SA RESULTS
 DEMOLITION LEVEL ERM SURVEY
 DOWLING FRUIT ORCHARD SITE
 38021 CA-60
 BEAUMONT, CALIFORNIA 92223

Reading No	Time	Type	Units	Sequence	Component	Substrate	Side	Condition	Color	Site	Inspector	Floor	Room	MISC	Results	Action Level	Lead Result (mg/cm ²)
195	11/19/2021 17:21	PAINT	mg / cm ²	FINAL	FLOOR	CONCRETE	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	LBP	0.7	1.4
196	11/19/2021 17:22	PAINT	mg / cm ²	FINAL	FLOOR	CONCRETE	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	LBP	0.7	1.9
197	11/19/2021 17:23	PAINT	mg / cm ²	FINAL	FLOOR	CONCRETE	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	LBP	0.7	1.5
198	11/19/2021 17:23	PAINT	mg / cm ²	FINAL	FLOOR CURB	CONCRETE	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	Negative	0.7	0
199	11/19/2021 17:24	PAINT	mg / cm ²	FINAL	FLOOR STOPPER	CONCRETE	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	Negative	0.7	0
200	11/19/2021 17:25	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1.1
201	11/19/2021 17:26	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1.1
202	11/19/2021 17:27	PAINT	mg / cm ²	FINAL			CALIBRATE								Positive	0.7	1.1

Appendix E

Table 3.1 - Lead XRF Results - LBP (Positive)

TABLE 3.1 - XRF SA RESULTS
 LEAD-BASED PAINTS ($\leq 0.7 \text{ mg/cm}^2$)
 DEMOLITION LEVEL ERM SURVEY
 DOWLING FRUIT ORCHARD SITE
 38021 CA-60
 BEAUMONT, CALIFORNIA 92223

Reading No	Time	Type	Units	Sequence	Component	Substrate	Side	Condition	Color	Site	Inspector	Floor	Room	MISC	Results	Action Level	Lead Result (mg/cm^2)
121	11/19/2021 13:18	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LBP	0.7	1.2
123	11/19/2021 13:19	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LBP	0.7	0.9
129	11/19/2021 13:21	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LBP	0.7	1.2
130	11/19/2021 13:23	PAINT	mg / cm ²	FINAL	DOOR	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	LBP	0.7	0.8
131	11/19/2021 13:24	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	LBP	0.7	0.8
140	11/19/2021 13:29	PAINT	mg / cm ²	FINAL	DOOR	WOOD	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LBP	0.7	0.8
141	11/19/2021 13:29	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LBP	0.7	1.1
144	11/19/2021 13:32	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 4	LBP	0.7	0.7
145	11/19/2021 13:34	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LBP	0.7	0.7
146	11/19/2021 13:34	PAINT	mg / cm ²	FINAL	DOOR	WOOD	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LBP	0.7	2.8
153	11/19/2021 13:43	PAINT	mg / cm ²	FINAL	TUB	METAL	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LBP	0.7	5.1
195	11/19/2021 17:21	PAINT	mg / cm ²	FINAL	FLOOR	CONCRETE	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	LBP	0.7	1.4
196	11/19/2021 17:22	PAINT	mg / cm ²	FINAL	FLOOR	CONCRETE	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	LBP	0.7	1.9
197	11/19/2021 17:23	PAINT	mg / cm ²	FINAL	FLOOR	CONCRETE	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	PARKING	LBP	0.7	1.5

Appendix F

Table 3.2 - Lead XRF Results (LCP)

TABLE 3.2 - XRF SA RESULTS
 LEAD-CONTAINING PAINTS ($\geq 0.01 \text{ mg/cm}^2$ AND $< 0.7 \text{ mg/cm}^2$)
 DEMOLITION LEVEL ERM SURVEY
 DOWLING FRUIT ORCHARD SITE
 38021 CA-60
 BEAUMONT, CALIFORNIA 92223

Reading No	Time	Type	Units	Sequence	Component	Substrate	Side	Condition	Color	Site	Inspector	Floor	Room	MISC	Results	Action Level	Lead Result (mg/cm^2)
9	11/17/2021 13:57	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	LCP	0.7	0.02
12	11/17/2021 13:59	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	LCP	0.7	0.27
13	11/17/2021 13:59	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 2	LCP	0.7	0.08
14	11/17/2021 14:01	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.12
15	11/17/2021 14:02	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.04
16	11/17/2021 14:02	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.01
17	11/17/2021 14:03	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 2	LCP	0.7	0.04
19	11/17/2021 14:06	PAINT	mg / cm ²	FINAL	DOOR	METAL	W	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 2	LCP	0.7	0.02
27	11/17/2021 14:16	PAINT	mg / cm ²	FINAL	DOOR FRAME	METAL	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	LCP	0.7	0.04
29	11/17/2021 14:18	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	LCP	0.7	0.01
30	11/17/2021 14:18	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 2	LCP	0.7	0.14
37	11/17/2021 14:22	PAINT	mg / cm ²	FINAL	BASEBOARD	CERAMIC	N	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	LCP	0.7	0.03
38	11/17/2021 14:22	PAINT	mg / cm ²	FINAL	TOILET	CERAMIC	N	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	LCP	0.7	0.01
39	11/17/2021 14:23	PAINT	mg / cm ²	FINAL	SINK	CERAMIC	W	POOR	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	7	BUILDING 2	LCP	0.7	0.09
47	11/17/2021 14:33	PAINT	mg / cm ²	FINAL	WINDOW	METAL	N	INTACT	GREY	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 2	LCP	0.7	0.01
54	11/17/2021 17:07	PAINT	mg / cm ²	FINAL	HEADER	WOOD	CENTER	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	LCP	0.7	0.07
55	11/17/2021 17:07	PAINT	mg / cm ²	FINAL	POST	METAL	CENTER	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 1	LCP	0.7	0.01
79	11/17/2021 17:19	PAINT	mg / cm ²	FINAL	POST	METAL	CENTER	INTACT	GREEN	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 1	LCP	0.7	0.02
85	11/17/2021 17:22	PAINT	mg / cm ²	FINAL	BASEBOARD	CERAMIC	W	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 1	LCP	0.7	0.4
118	11/19/2021 13:15	PAINT	mg / cm ²	FINAL	CEILING	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 4	LCP	0.7	0.02
120	11/19/2021 13:17	PAINT	mg / cm ²	FINAL	DOOR FRAME	WOOD	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	1	BUILDING 4	LCP	0.7	0.6
122	11/19/2021 13:18	PAINT	mg / cm ²	FINAL	DOOR	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.5
124	11/19/2021 13:19	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.4
125	11/19/2021 13:20	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.4
126	11/19/2021 13:20	PAINT	mg / cm ²	FINAL	WALL	PLASTER	W	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.5
128	11/19/2021 13:21	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	2	BUILDING 4	LCP	0.7	0.5
132	11/19/2021 13:24	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	PINK	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	3	BUILDING 4	LCP	0.7	0.29
136	11/19/2021 13:27	PAINT	mg / cm ²	FINAL	WALL	PLASTER	E	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LCP	0.7	0.01
138	11/19/2021 13:28	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LCP	0.7	0.4
139	11/19/2021 13:28	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	4	BUILDING 4	LCP	0.7	0.4
142	11/19/2021 13:30	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 4	LCP	0.7	0.3
143	11/19/2021 13:31	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	YELLOW	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	6	BUILDING 4	LCP	0.7	0.6
147	11/19/2021 13:41	PAINT	mg / cm ²	FINAL	WINDOW	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.5
148	11/19/2021 13:41	PAINT	mg / cm ²	FINAL	WINDOW FRAME	WOOD	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.3
149	11/19/2021 13:42	PAINT	mg / cm ²	FINAL	WALL	PLASTER	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.4
150	11/19/2021 13:42	PAINT	mg / cm ²	FINAL	WALL	PLASTER	N	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	5	BUILDING 4	LCP	0.7	0.5
155	11/19/2021 13:47	PAINT	mg / cm ²	FINAL	WALL	STUCCO	S	INTACT	WHITE	DOWLING FRUIT ORCHARD	N.ORTIZ	FIRST	EXT	BUILDING 4	LCP	0.7	0.5

Appendix 5: LID Infeasibility

LID Technical Infeasibility Analysis

We analyzed potential BMP's using the established hierarchy in the WQMP Guidance manual. It was determined that infiltration was not feasible due to the low site infiltration rates. Harvest and Reuse was determined not to be feasible due to drought conditions. LID bioretention method was the selected BMP for treatment for most of the site using a bioretention basin along the westerly side. Due to grade elevations, a small area located at the southwest corner of the site could not be conveyed to the basin. Instead a gravel filtration trench will be constructed. This is a practical low maintenance option when no proprietary systems are allowed and when other options are not available.

CHAPTER 3: PREPARING YOUR PROJECT - SPECIFIC WQMP

TABLE 3-4. LID BMP Applicability

LID BMP Hierarchy	A	B	C	D
	$K_{SAT} > 1.6''/hr.$, and no restrictions on infiltration	Are Harvest and Use BMPs feasible?	$0.3''/hr. < K_{SAT} < 1.6''/hr.$, or unpredictable or unknown	$K_{SAT} < 0.3''/hr.$
LID Infiltration BMPs*	✓			
Harvest and Use BMPs		✓		✓
LID Bioretention	✓		✓	✓
LID Biotreatment				✓

Notes for Table 3-5:

See also Figure 3-6 for guidance in selecting appropriate BMPs

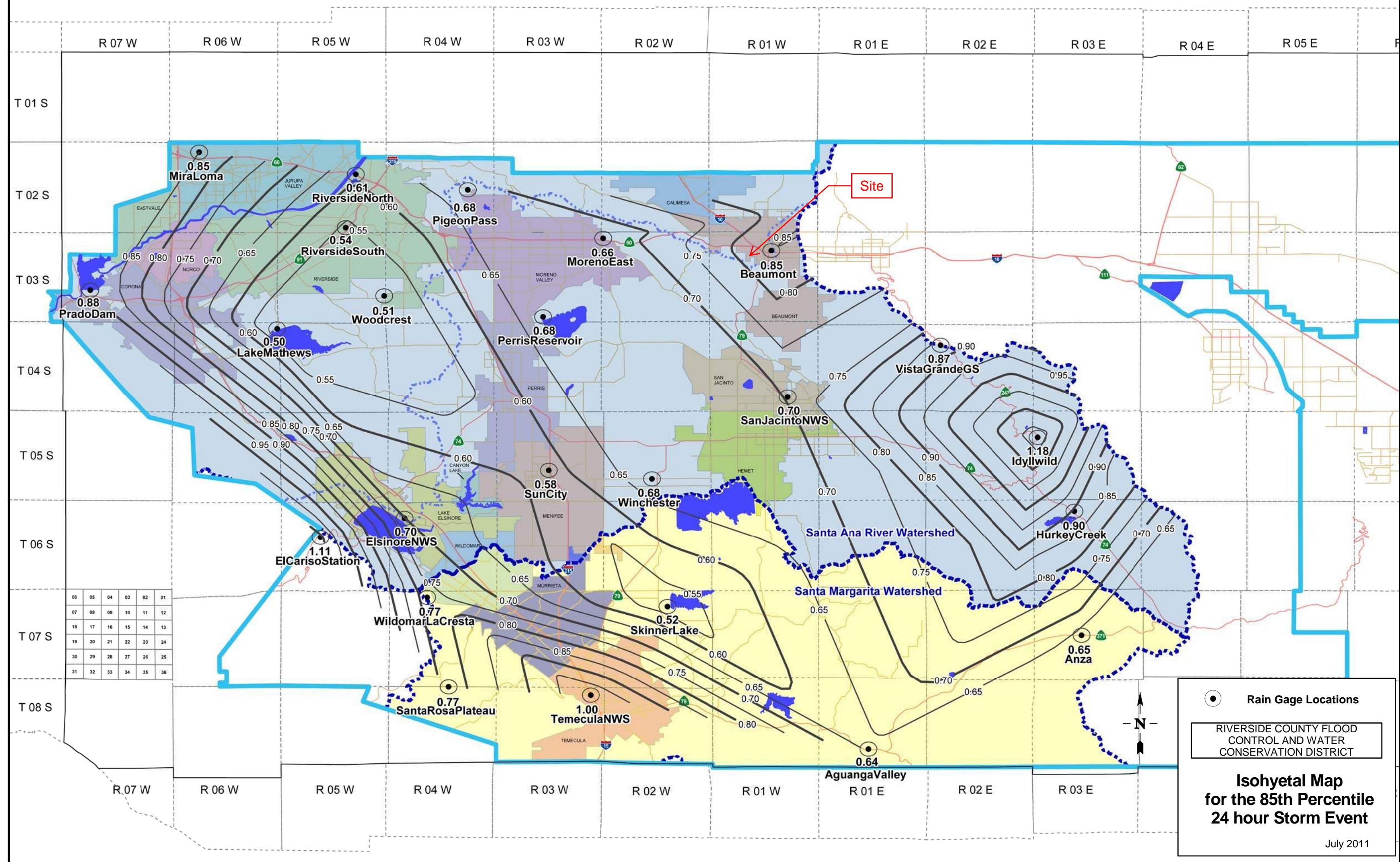
Column A: Selections from this column may be used in locations where the infiltration rate of underlying soils is at least 1.6" per hour and no restrictions on infiltration apply to these locations.

Column B: Harvest and Use BMPs may be used where it can be shown that there is sufficient demand for harvested water and where LID Infiltration BMPs are not feasible.

Column C: Selections in this column may be used in locations where the measured infiltration rate of underlying soils is between 0.3" and 1.6" per hour or where, in accordance with recommendations of a licensed geotechnical engineer, the post-development saturated hydraulic conductivity is uncertain or unknown or cannot be reliably predicted because of soil disturbance or fill, anisotropic soil characteristics, presence of clay lenses, or other factors.

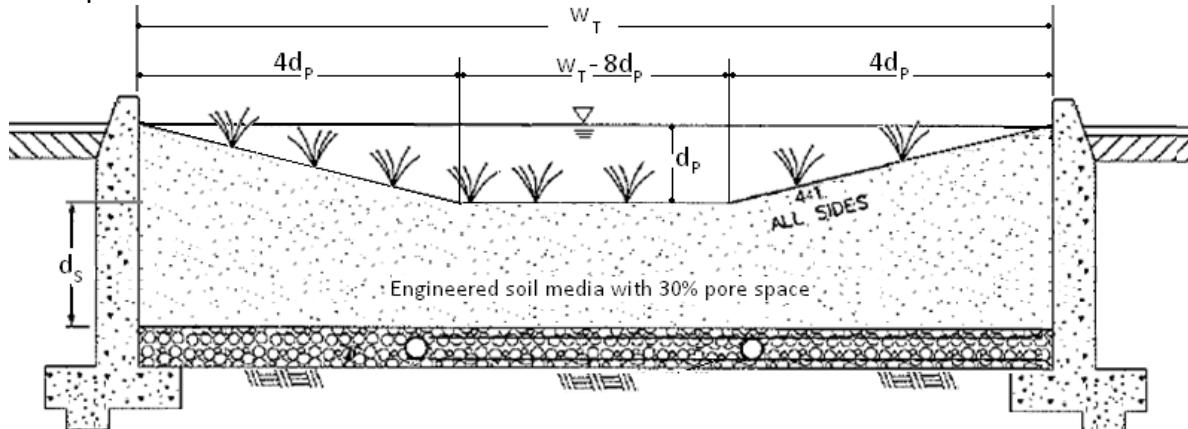
Column D: Selections in this column may be used in locations where the infiltration rate of underlying soils is 0.3" per hour or less. See Chapter 2 for more information.

* Permeable Pavement, when designed with a maximum of a 2:1 ratio of impervious area to pervious pavement areas, or less, is considered a self-retaining area, and is not considered an LID BMP for the purposes of this table. This table focuses on the 'special case' included in the discussion of 'areas draining to self-retaining areas' above, where a project proponent can choose to design the pervious pavement as a LID BMP in accordance with an approved design, such as the LID BMP Design handbook, and in return drain additional impervious area onto the pervious pavement beyond the 2:1 ratio.


3.4.2.a. Laying out your LID BMPs

Finding the right location for LID BMPs on your site involves a careful and creative integration of several factors:

- ✓ To make the most efficient use of the site and to maximize aesthetic value, **integrate BMPs with site landscaping**. Many local zoning codes may require landscape setbacks or buffers, or may specify that a minimum portion of the site be landscaped. It may be possible to locate some or all of your site's Stormwater BMPs within this same area, or within utility easements or other non-buildable areas.
- ✓ Bioretention BMPs must be **level or nearly level** all the way around. When configured in a linear fashion (similar to swales) bioretention BMPs may be gently sloped end to end, but opposite sides must be at the same


Appendix 6: BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation

Bioretention Facility Design Procedure

- 1) Enter the area tributary, A_T , to the Bioretention Facility.
- 2) Enter the Design Volume, V_{BMP} , determined from Section 2.1 of this Handbook.
- 3) Select the type of design used. There are two types of Bioretention Facility designs: the standard design used for most project sites that include side slopes, and the modified design used when the BMP is located perpendicular to the parking spaces or with planter boxes that do not use side slopes.
- 4) Enter the depth of the engineered soil media, d_S . The minimum depth for the engineered soil media can be 18' in limited cases, but it is recommended to use 24' or a preferred 36' to provide an adequate root zone for the chosen plant palette. Engineered soil media deeper than 36' will only get credit for the pore space in the first 36'.
- 5) Enter the top width of the Bioretention Facility.
- 6) Calculate the total effective depth, d_E , within the Bioretention Facility. The maximum allowable pore space of the soil media is 30% while the maximum allowable pore space for the gravel layer is 40%. Gravel layer deeper than 12' will only get credit for the pore space in the first 12'.

- a. For the design with side slopes the following equation shall be used to determine the total effective depth. Where, d_P is the depth of ponding within the basin.

$$d_E(\text{ft}) = \frac{0.3 \times [(w_T(\text{ft}) \times d_S(\text{ft})) + 4(d_P(\text{ft}))^2] + 0.4 \times 1(\text{ft}) + d_P(\text{ft})[4d_P(\text{ft}) + (w_T(\text{ft}) - 8d_P(\text{ft}))]}{w_T(\text{ft})}$$

This above equation can be simplified if the maximum ponding depth of 0.5' is used. The equation below is used on the worksheet to find the minimum area required for the Bioretention Facility:

$$d_E(\text{ft}) = (0.3 \times d_S(\text{ft}) + 0.4 \times 1(\text{ft})) - \left(\frac{0.7 (\text{ft}^2)}{w_T(\text{ft})} \right) + 0.5(\text{ft})$$

b. For the design without side slopes the following equation shall be used to determine the total effective depth:

$$d_E(\text{ft}) = d_P(\text{ft}) + [(0.3) \times d_S(\text{ft}) + (0.4) \times 1(\text{ft})]$$

The equation below, using the maximum ponding depth of 0.5', is used on the worksheet to find the minimum area required for the Bioretention Facility:

$$d_E(\text{ft}) = 0.5 (\text{ft}) + [(0.3) \times d_S(\text{ft}) + (0.4) \times 1(\text{ft})]$$

7) Calculate the minimum surface area, A_M , required for the Bioretention Facility. This does not include the curb surrounding the Bioretention Facility or side slopes.

$$A_M(\text{ft}^2) = \frac{V_{\text{BMP}}(\text{ft}^3)}{d_E(\text{ft})}$$

8) Enter the proposed surface area. This area shall not be less than the minimum required surface area.

9) Verify that side slopes are no steeper than 4:1 in the standard design, and are not required in the modified design.

10) Provide the diameter, minimum 6 inches, of the perforated underdrain used in the Bioretention Facility. See Appendix B for specific information regarding perforated pipes.

11) Provide the slope of the site around the Bioretention Facility, if used. The maximum slope is 3 percent for a standard design.

12) Provide the check dam spacing, if the site around the Bioretention Facility is sloped.

13) Describe the vegetation used within the Bioretention Facility.

Bioretention Facility - Design Procedure		BMP ID Bioretention	Legend:	Required Entries
Company Name:	Huitt-Zollars, Inc		Date:	2/9/2022
Designed by:	Steve Diaz		County/City Case No.:	
Design Volume				
Enter the area tributary to this feature			$A_T =$	29.36 acres
Enter V_{BMP} determined from Section 2.1 of this Handbook			$V_{BMP} =$	67,856 ft ³
Type of Bioretention Facility Design				
<input checked="" type="radio"/> Side slopes required (parallel to parking spaces or adjacent to walkways) <input type="radio"/> No side slopes required (perpendicular to parking space or Planter Boxes)				
Bioretention Facility Surface Area				
Depth of Soil Filter Media Layer			$d_S =$	3.0 ft
Top Width of Bioretention Facility, excluding curb			$w_T =$	90.0 ft
Total Effective Depth, d_E			$d_E =$	1.79 ft
$d_E = (0.3) \times d_S + (0.4) \times 1 - (0.7/w_T) + 0.5$				
Minimum Surface Area, A_m			$A_M =$	37,862 ft ²
$A_M (\text{ft}^2) = \frac{V_{BMP} (\text{ft}^3)}{d_E (\text{ft})}$				
Proposed Surface Area			$A =$	38,021 ft ²
Bioretention Facility Properties				
Side Slopes in Bioretention Facility			$z =$	4 : 1
Diameter of Underdrain				6 inches
Longitudinal Slope of Site (3% maximum)				0.05 %
6" Check Dam Spacing				0 feet
Describe Vegetation:		Other		
Notes:				

Notes:

BIO CLEAN FULL CAPTURE FILTER WITH TROUGH SYSTEM

FOR USE IN CURB INLETS

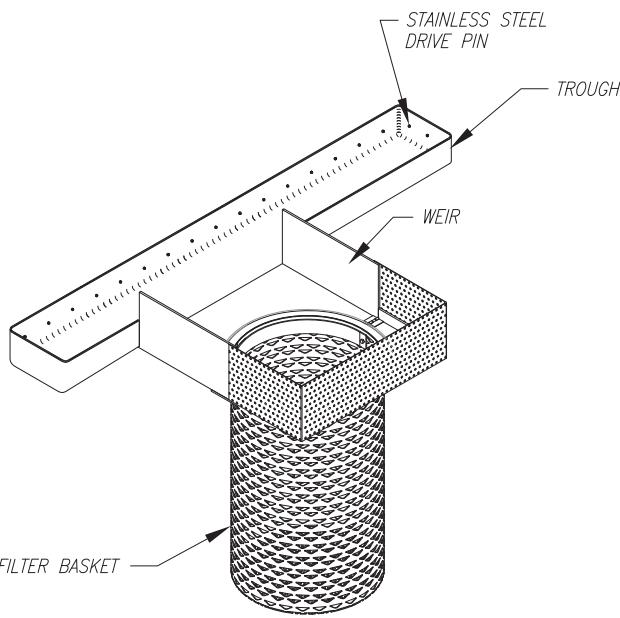


FIGURE 1:
DETAIL OF PARTS

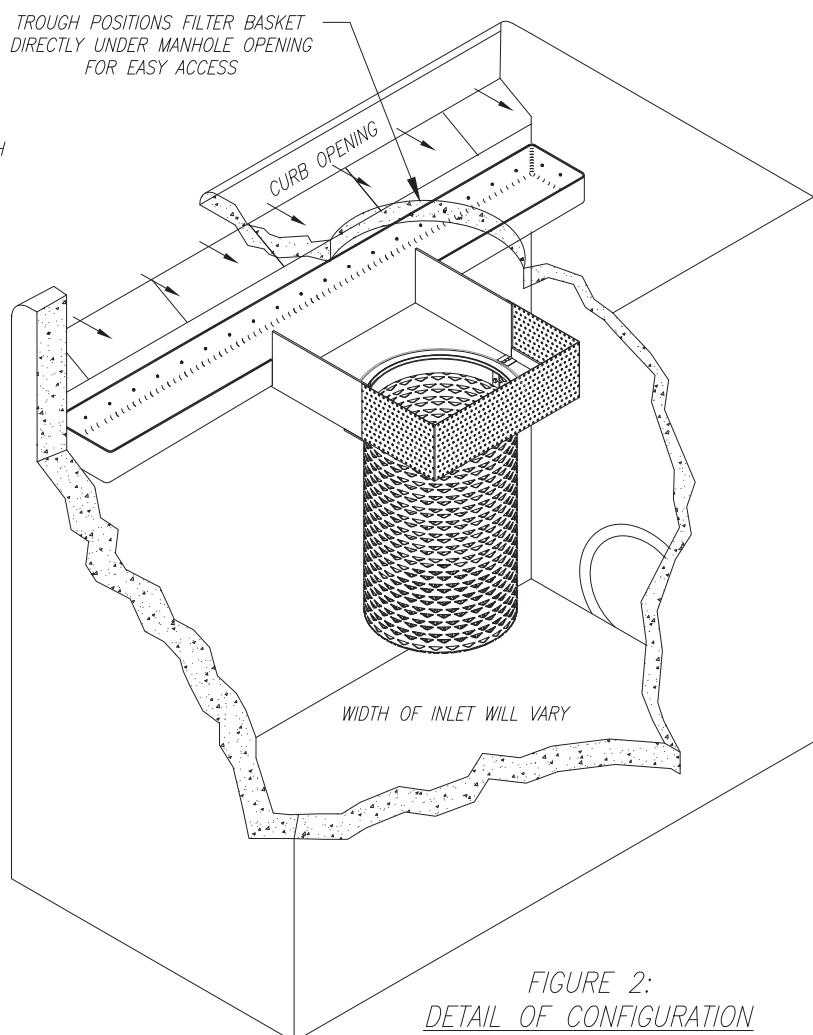


FIGURE 2:
DETAIL OF CONFIGURATION

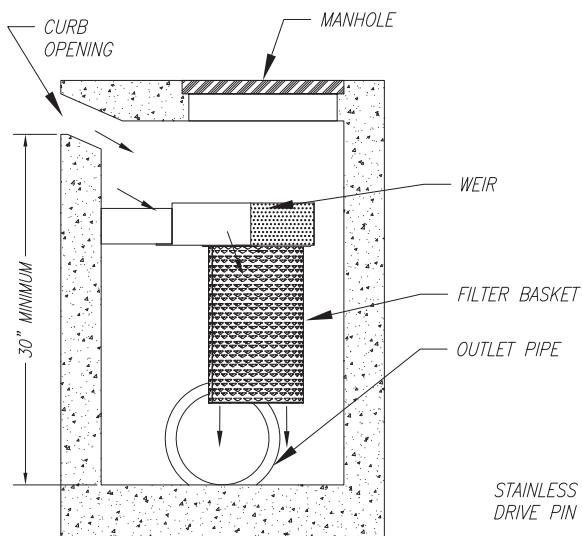


FIGURE 4:
DETAIL OF PROFILE

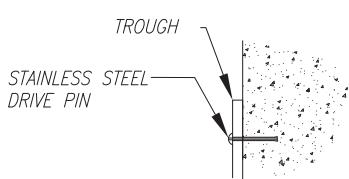


FIGURE 3:
DETAIL OF MOUNTING

NOTES:

1. TROUGH SYSTEM PROVIDES FOR ENTIRE COVERAGE OF INLET OPENING SO TO DIVERT ALL FLOW TO FILTER.
2. TROUGH SYSTEM MANUFACTURED FROM MARINE GRADE FIBERGLASS, GEL COATED FOR UV PROTECTION.
3. SYSTEM ATTACHED TO THE CATCH BASIN WITH NON-CORROSION HARDWARE.
4. FILTER MANUFACTURED OF 100% STAINLESS STEEL.
5. FILTER MADE OF NON-CLOGGING SCREEN WITH 4.7 MM OPENINGS AND MEETS FULL CAPTURE REQUIREMENTS.
6. FILTER CAN BE FITTED WITH HYDROCARBON ABSORBENT BOOM.
7. FILTER IS LOCATED DIRECTLY UNDER THE MANHOLE FOR EASY REMOVAL AND MAINTENANCE.
8. LENGTH OF TROUGH CAN VARY FROM 2' TO 30'.
9. OTHER STANDARD AND CUSTOM MODEL SIZES AVAILABLE - CONTACT BIO CLEAN FOR MORE INFORMATION.
10. CONSIDERS A SAFETY FACTOR OF 2.0.
11. BYPASS IS FACILITATED VIA OVERFLOW OF THE TROUGH SYSTEM AND IS EQUAL TO THE CAPACITY OF THE CURB OPENING.
12. STORAGE CAPACITY BASED ON THE BASKET HALF FULL.
13. ADDITIONAL TREATMENT AND STORAGE CAPACITY CAN BE ACHIEVED BY UTILIZING MULTIPLE FILTER BASKETS.

MODEL NUMBER	TREATMENT FLOW (cfs)*	SOLIDS STORAGE CAPACITY (cu ft)
BC-CURB-FC-30	2.85	2.21
BC-CURB-FC-24	2.85	1.77
BC-CURB-FC-18	2.85	1.33
BC-CURB-FC-12	2.85	0.88

DRAWING: BIO CLEAN CURB INLET FILTER DETAILS

MEETS FULL CAPTURE REQUIREMENTS

TREATMENT FLOW RATE: 2.85 cfs

MODEL #: BC-CURB-FC

WARRANTY: 5 YEAR MANUFACTURERS

PROJECT:

BIO CLEAN ENVIRONMENTAL SERVICES, INC.
398 VIA EL CENTRO, OCEANSIDE CA 92058
PHONE: 760-433-7640 FAX: 760-433-3176

REVISIONS: DATE:

DATE: 10/12/2017

SCALE: NTS

DRAFTER: M.C.P.

UNITS = INCHES

REVISIONS: DATE:

REVISIONS: DATE:

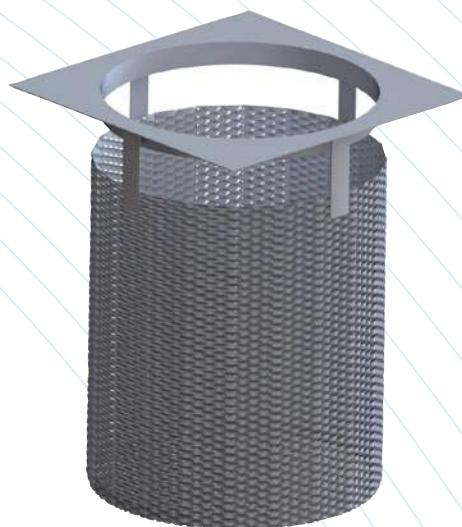
Bio Clean
A Forterra Company

*SEE PAGE 2 FOR EXPLANATION OF FLOW RATES

Grate Inlet Filter

The Bio Clean Grate Inlet Filter for catch basins keeps property owners in compliance. Preferred by public agencies and backed by an 8 year warranty, this easy to install filter is continuously chosen for its durability and simple maintenance.

Constructed of 100% high grade stainless steel, it is built to last longer than any other filter brand. The non-clogging screens provide higher levels of filtration and water flow. The filter is equipped with unimpeded high flow bypass for even the largest storm events.

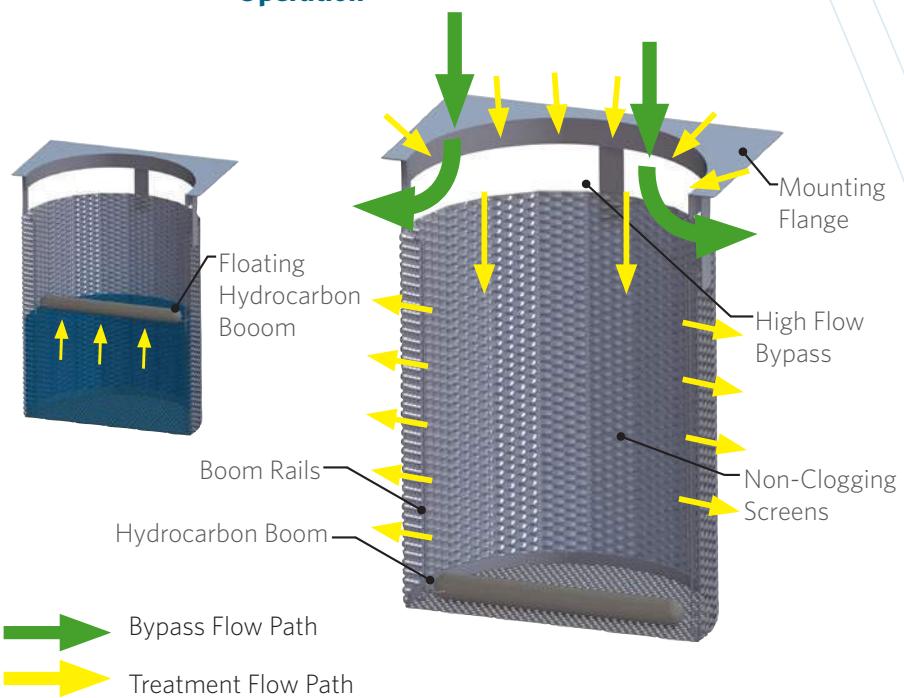

The filter is also equipped with a floating hydrocarbon boom mounted to rails allowing it to flow up and down with the water level over a range of flow conditions.

The filter is designed for grated inlets of any size and depth. Each filter can be custom built to meet specific project needs. Screen size and media type can be modified to remove specific pollutants.

Advantages and Performance

- 8 Year warranty
- Custom sizes available
- No nets or geofabrics
- 15+ years user life
- No replacement costs as found with fabric filters
- Meets LEED requirements
- Fits in shallow catch basins
- 100% removal of trash and debris
- Meets full capture requirements

100% Full trash capture



Specifications

Model #	Treatment Flow (CFS)	Bypass Flow (CFS)
BC-GRAVE-12-12-12	1.55	1.55
BC-GRAVE-18-18-18	4.32	3.68
BC-GRAVE-24-24-24	7.67	4.83
BC-GRAVE-30-30-24	12.97	6.21
BC-GRAVE-25-38-24	13.53	6.59
BC-GRAVE-36-36-24	19.64	7.60
BC-GRAVE-48-48-18	25.59	10.13

NOTE: Treatment and bypass flow rates include a safety factor of 2.

Operation

GRAVEL TRENCH CAPACITY

>>>CHANNEL INPUT INFORMATION<<<

NORMAL DEPTH(FEET) = 1.50

CHANNEL Z1(HORIZONTAL/VERTICAL) = 0.00

Z2(HORIZONTAL/VERTICAL) = 0.00

BASEWIDTH(FEET) = 2.00

CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.065000

MANNINGS FRICTION FACTOR = 0.0250

=====

NORMAL-DEPTH FLOW INFORMATION:

>>>> NORMAL DEPTH FLOW(CFS) = 32.34 Capacity using 40% voids is 12.9 cfs (32.3cfs*0.4)

FLOW TOP-WIDTH(FEET) = 2.00

FLOW AREA(SQUARE FEET) = 3.00

HYDRAULIC DEPTH(FEET) = 1.50

FLOW AVERAGE VELOCITY(FEET/SEC.) = 10.78

UNIFORM FROUDE NUMBER = 1.551

PRESSURE + MOMENTUM(POUNDS) = 816.05

AVERAGED VELOCITY HEAD(FEET) = 1.805

SPECIFIC ENERGY(FEET) = 3.305

=====

CRITICAL-DEPTH FLOW INFORMATION:

CRITICAL FLOW TOP-WIDTH(FEET) = 2.00

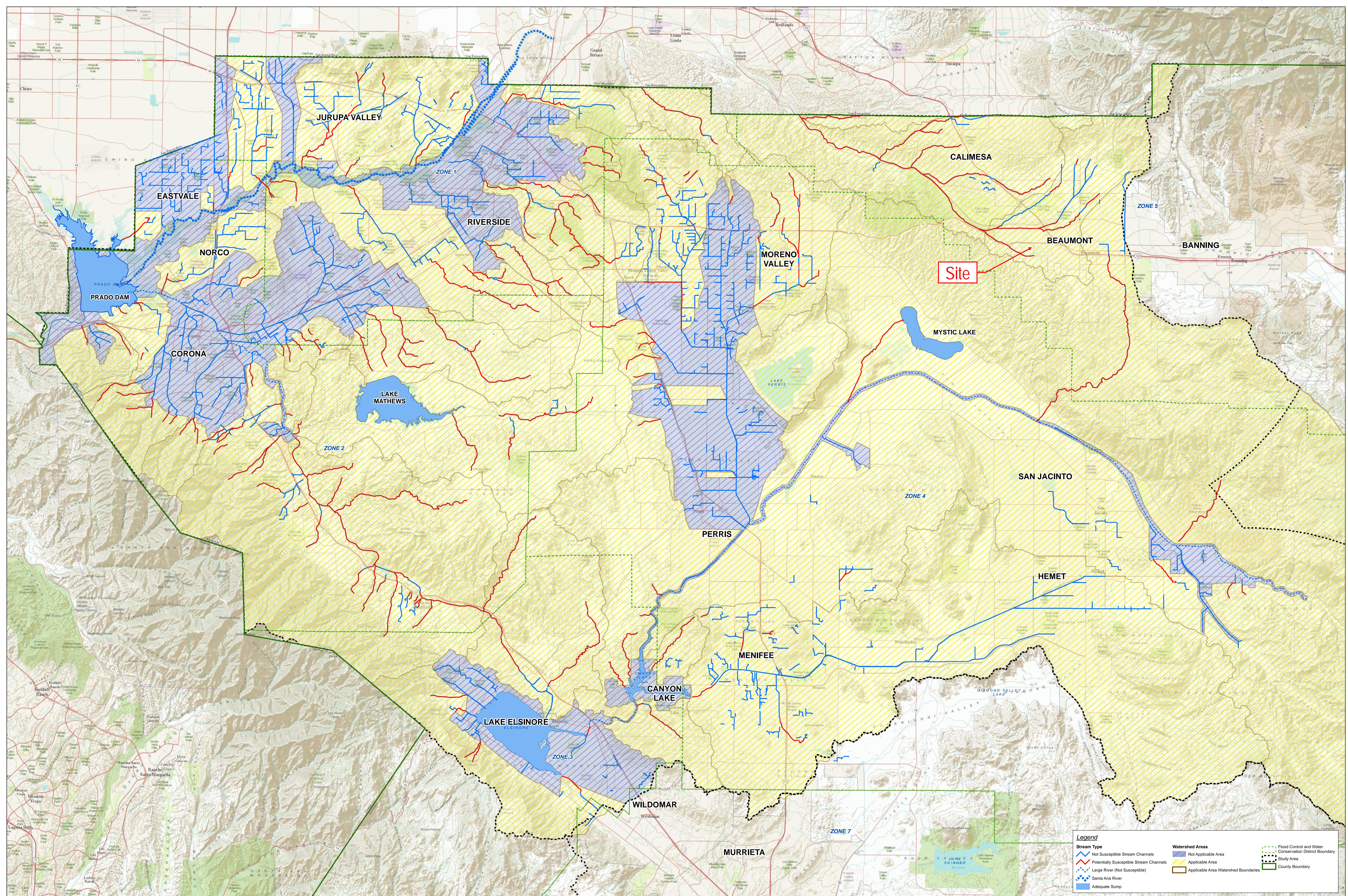
CRITICAL FLOW AREA(SQUARE FEET) = 4.02

CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.01

CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 8.04

CRITICAL DEPTH(FEET) = 2.01

CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 756.32


AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 1.004

CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.015

=====

Appendix 7: Hydromodification

Supporting Detail Relating to Hydrologic Conditions of Concern

HCOC Applicability Map

Hydromodification Susceptibility Documentation Report and Mapping
Riverside County Flood Control and Water Conservation District

Project: Orchard Logistics Center

Bioretention System Routing Study

Stage Storage Number	Storage Depth (ft)	Elevation (ft)	Area (ft ²)	Incremental volume (ft ³)	Total Volume (ft ³)	Total Volume (acre-ft)	Outflow Q (cfs)	Notes
1	0.00	2528.50	38,021	0	0	0	0.0	6-INCH OUTLET
2	1.00	2529.50	38,021	15,208	15,208	0.3491	0.82	TOP OF ROCK/BOTTOM OF MEDIA
3	2.00	2530.50	38,021	11,406	26,615	0.6110	1.25	
4	3.00	2531.50	38,021	11,406	38,021	0.8728	1.57	
5	4.00	2532.50	38,021	11,406	49,427	1.1347	1.83	TOP OF MEDIA/BOTTOM OF BASIN
6	4.50	2533.00	41,232	19,813	69,241	1.5895	1.95	WQMP 6" PONDING DEPTH
7	5.00	2533.50	44,285	21,379	90,620	2.0803	13.06	
8	5.50	2534.00	47,734	23,005	113,625	2.6085	33.27	
9	6.50	2535.00	54,363	51,049	164,673	3.7804	50.50	
10	7.50	2536.00	61,129	57,746	222,419	5.1060	61.50	
11	8.50	2537.00	68,056	64,593	287,012	6.5889	70.79	TOP OF BASIN 2538 W/ 1 FT FREEBOARD

*WQMP Design Capture Volume (DCV) is 67,856 CF

Basin Routing Summary Table

	2 YR 24 HR	100 YR 1 HR	100 YR 24 HR
Existing Q (cfs) 30.91 ac	5.0	83.8	22.6
Proposed Q(cfs) 30.91 ac	8.0	84.6	23.8
Q (cfs) after Routing	5.0	26.6	22.4
WSE (ft)	2533.16	2533.84	2533.73

FLOOD HYDROGRAPH ROUTING PROGRAM
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2005
Study date: 05/31/22

ORCHARD LOGISTICS CENTER
2 YR 24 HR STORM EVENT

2838Q2R
SD

Program License Serial Number 6145

***** HYDROGRAPH INFORMATION *****

From study/file name: 2838QUHP242.rte
*****HYDROGRAPH DATA*****
Number of intervals = 292
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 7.993 (CFS)
Total volume = 4.095 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000

+++++
Process from Point/Station 8.000 to Point/Station 9.000
**** RETARDING BASIN ROUTING ****

User entry of depth-outflow-storage data

Total number of inflow hydrograph intervals = 292
Hydrograph time unit = 5.000 (Min.)
Initial depth in storage basin = 0.00(Ft.)

Initial basin depth = 0.00 (Ft.)
Initial basin storage = 0.00 (Ac.Ft)
Initial basin outflow = 0.00 (CFS)

Depth vs. Storage and Depth vs. Discharge data:
Basin Depth Storage Outflow (S-0*dt/2) (S+0*dt/2)
(Ft.) (Ac.Ft) (CFS) (Ac.Ft) (Ac.Ft)

0.000	0.000	0.000	0.000	0.000
1.000	0.349	0.820	0.346	0.352
2.000	0.611	1.250	0.607	0.615
3.000	0.873	1.570	0.868	0.878
4.000	1.135	1.820	1.129	1.141
4.500	1.589	1.950	1.582	1.596
5.000	2.080	13.060	2.035	2.125
5.500	2.608	33.270	2.493	2.723
6.500	3.780	50.500	3.606	3.954
7.500	5.106	61.500	4.894	5.318
8.500	6.589	70.790	6.345	6.833

 Hydrograph Detention Basin Routing

Graph values: 'I'= unit inflow; '0'=outflow at time shown

Time (Hours)	Inflow (CFS)	Outflow (CFS)	Storage (Ac.Ft)	0	2.0	4.00	6.00	7.99	Depth (Ft.)
0.083	0.20	0.00	0.001	0					0.00
0.167	0.43	0.01	0.003	0I					0.01
0.250	0.48	0.01	0.006	0I					0.02
0.333	0.60	0.02	0.009	0 I					0.03
0.417	0.72	0.03	0.014	0 I					0.04
0.500	0.74	0.04	0.019	0 I					0.05
0.583	0.75	0.05	0.023	0 I					0.07
0.667	0.76	0.07	0.028	0 I					0.08
0.750	0.76	0.08	0.033	0 I					0.09
0.833	0.86	0.09	0.038	0 I					0.11
0.917	0.97	0.10	0.044	0 I					0.12
1.000	1.00	0.12	0.050	0 I					0.14
1.083	0.90	0.13	0.055	0 I					0.16
1.167	0.80	0.14	0.060	0 I					0.17
1.250	0.77	0.15	0.065	0 I					0.18
1.333	0.76	0.16	0.069	0 I					0.20
1.417	0.76	0.17	0.073	0 I					0.21
1.500	0.76	0.18	0.077	0 I					0.22
1.583	0.76	0.19	0.081	0 I					0.23
1.667	0.76	0.20	0.085	0 I					0.24
1.750	0.76	0.21	0.088	0 I					0.25
1.833	0.86	0.22	0.093	0 I					0.27
1.917	0.97	0.23	0.097	0 I					0.28
2.000	1.00	0.24	0.103	0 I					0.29
2.083	1.01	0.25	0.108	0 I					0.31
2.167	1.01	0.27	0.113	0 I					0.32
2.250	1.01	0.28	0.118	0 I					0.34
2.333	1.01	0.29	0.123	0 I					0.35
2.417	1.01	0.30	0.128	0 I					0.37
2.500	1.01	0.31	0.133	0 I					0.38
2.583	1.11	0.32	0.138	0 I					0.39

2.667	1.22	0.34	0.144	0 I				0.41
2.750	1.25	0.35	0.150	0 I				0.43
2.833	1.26	0.37	0.156	0 I				0.45
2.917	1.26	0.38	0.162	0 I				0.46
3.000	1.26	0.39	0.168	0 I				0.48
3.083	1.26	0.41	0.174	0 I				0.50
3.167	1.26	0.42	0.180	0 I				0.52
3.250	1.26	0.44	0.186	0 I				0.53
3.333	1.26	0.45	0.191	0 I				0.55
3.417	1.26	0.46	0.197	0 I				0.56
3.500	1.26	0.48	0.202	0 I				0.58
3.583	1.26	0.49	0.208	0 I				0.59
3.667	1.26	0.50	0.213	0 I				0.61
3.750	1.26	0.51	0.218	0 I				0.62
3.833	1.36	0.53	0.224	0 I				0.64
3.917	1.48	0.54	0.230	0 I				0.66
4.000	1.50	0.55	0.236	0 I				0.68
4.083	1.51	0.57	0.243	0 I				0.70
4.167	1.51	0.59	0.249	0 I				0.71
4.250	1.51	0.60	0.255	0 I				0.73
4.333	1.62	0.62	0.262	0 I				0.75
4.417	1.73	0.63	0.269	0 I				0.77
4.500	1.75	0.65	0.277	0 I				0.79
4.583	1.76	0.67	0.284	0 I				0.81
4.667	1.77	0.69	0.292	0 I				0.84
4.750	1.77	0.70	0.299	0 I				0.86
4.833	1.87	0.72	0.307	0 I				0.88
4.917	1.98	0.74	0.315	0 I				0.90
5.000	2.01	0.76	0.324	0 I				0.93
5.083	1.81	0.78	0.331	0 I				0.95
5.167	1.59	0.79	0.338	0 I				0.97
5.250	1.54	0.81	0.343	0 I				0.98
5.333	1.63	0.82	0.348	0 I				1.00
5.417	1.73	0.83	0.354	0 I				1.02
5.500	1.75	0.84	0.361	0 I				1.04
5.583	1.86	0.85	0.367	0 I				1.07
5.667	1.98	0.86	0.375	0 I				1.10
5.750	2.01	0.87	0.382	0 I				1.13
5.833	2.02	0.89	0.390	0 I				1.16
5.917	2.02	0.90	0.398	0 I				1.19
6.000	2.02	0.91	0.405	0 I				1.22
6.083	1.27	0.92	0.410	0 I				1.23
6.167	0.45	0.92	0.410	I 0				1.23
6.250	0.28	0.91	0.406	I 0				1.22
6.333	0.22	0.91	0.402	I 0				1.20
6.417	0.20	0.90	0.397	I 0				1.18
6.500	0.21	0.89	0.392	I 0				1.16
6.583	0.33	0.88	0.388	I 0				1.15
6.667	0.47	0.88	0.385	I 0				1.14
6.750	0.51	0.87	0.382	I 0				1.13

6.833	0.53	0.87	0.380	IO					1.12
6.917	0.54	0.87	0.377	IO					1.11
7.000	0.55	0.86	0.375	IO					1.10
7.083	0.56	0.86	0.373	IO					1.09
7.167	0.57	0.86	0.371	IO					1.08
7.250	0.58	0.85	0.369	IO					1.08
7.333	0.71	0.85	0.368	IO					1.07
7.417	0.84	0.85	0.367	0					1.07
7.500	0.88	0.85	0.367	0					1.07
7.583	1.01	0.85	0.368	OI					1.07
7.667	1.15	0.85	0.369	OI					1.08
7.750	1.19	0.86	0.372	OI					1.09
7.833	1.32	0.86	0.374	0 I					1.10
7.917	1.46	0.87	0.378	0 I					1.11
8.000	1.50	0.87	0.382	0 I					1.13
8.083	1.75	0.88	0.387	0 I					1.15
8.167	2.01	0.89	0.394	0 I					1.17
8.250	2.07	0.91	0.402	0 I					1.20
8.333	2.11	0.92	0.410	0 I					1.23
8.417	2.12	0.93	0.418	0 I					1.26
8.500	2.13	0.95	0.426	0 I					1.30
8.583	2.26	0.96	0.435	0 I					1.33
8.667	2.39	0.98	0.444	0 I					1.36
8.750	2.43	0.99	0.454	0 I					1.40
8.833	2.56	1.01	0.464	0 I					1.44
8.917	2.70	1.03	0.476	0 I					1.48
9.000	2.74	1.05	0.487	0 I					1.53
9.083	2.98	1.07	0.500	0 I					1.57
9.167	3.25	1.09	0.514	0 I					1.63
9.250	3.31	1.11	0.529	0 I					1.69
9.333	3.46	1.14	0.544	0 I					1.74
9.417	3.60	1.17	0.560	0 I					1.81
9.500	3.64	1.19	0.577	0 I					1.87
9.583	3.77	1.22	0.594	0 I					1.94
9.667	3.91	1.25	0.612	0 I					2.01
9.750	3.94	1.27	0.631	0 I					2.08
9.833	4.08	1.30	0.649	0 I					2.15
9.917	4.22	1.32	0.669	0 I					2.22
10.000	4.25	1.35	0.689	0 I					2.30
10.083	3.48	1.37	0.706	0 I					2.36
10.167	2.62	1.38	0.718	0 I					2.41
10.250	2.44	1.39	0.726	0 I					2.44
10.333	2.38	1.40	0.733	0 I					2.46
10.417	2.35	1.41	0.739	0 I					2.49
10.500	2.36	1.41	0.746	0 I					2.51
10.583	2.93	1.43	0.754	0 I					2.55
10.667	3.57	1.44	0.767	0 I					2.59
10.750	3.71	1.46	0.782	0 I					2.65
10.833	3.77	1.48	0.798	0 I					2.71
10.917	3.81	1.50	0.813	0 I					2.77

11.000	3.82	1.52	0.829	0	I			2.83
11.083	3.71	1.54	0.845	0	I			2.89
11.167	3.60	1.55	0.859	0	I			2.95
11.250	3.58	1.57	0.873	0	I			3.00
11.333	3.58	1.58	0.887	0	I			3.05
11.417	3.58	1.60	0.901	0	I			3.11
11.500	3.59	1.61	0.914	0	I			3.16
11.583	3.37	1.62	0.927	0	I			3.21
11.667	3.13	1.63	0.938	0	I			3.25
11.750	3.08	1.64	0.948	0	I			3.29
11.833	3.18	1.65	0.959	0	I			3.33
11.917	3.31	1.66	0.970	0	I			3.37
12.000	3.34	1.67	0.981	0	I			3.41
12.083	4.15	1.69	0.995	0	I			3.47
12.167	5.04	1.71	1.015	0	I			3.54
12.250	5.24	1.73	1.039	0	I			3.63
12.333	5.43	1.75	1.064	0	I			3.73
12.417	5.60	1.78	1.089	0	I			3.83
12.500	5.64	1.80	1.116	0	I			3.93
12.583	5.88	1.82	1.143	0	I			4.01
12.667	6.15	1.83	1.172	0	I			4.04
12.750	6.21	1.84	1.202	0	I			4.07
12.833	6.35	1.85	1.232	0	I			4.11
12.917	6.49	1.86	1.264	0	I			4.14
13.000	6.53	1.87	1.296	0	I			4.18
13.083	7.11	1.88	1.330	0	I			4.21
13.167	7.75	1.89	1.368	0	I			4.26
13.250	7.89	1.90	1.409	0	I			4.30
13.333	7.95	1.91	1.450	0	I			4.35
13.417	7.99	1.92	1.492	0	I			4.39
13.500	7.99	1.93	1.534	0	I			4.44
13.583	6.76	1.94	1.571	0	I			4.48
13.667	5.39	2.17	1.599	0	I			4.51
13.750	5.10	2.62	1.618	0	I			4.53
13.833	4.99	2.97	1.634	0	I			4.55
13.917	4.95	3.26	1.647	0	I			4.56
14.000	4.95	3.50	1.658	0	I			4.57
14.083	5.41	3.75	1.668	0	I			4.58
14.167	5.92	4.02	1.681	0	I			4.59
14.250	6.04	4.31	1.693	0	I			4.61
14.333	5.97	4.55	1.704	0	I			4.62
14.417	5.88	4.75	1.713	0	I			4.63
14.500	5.86	4.91	1.720	0	I			4.63
14.583	5.85	4.92	1.726	0	I			4.64
14.667	5.86	4.99	1.731	0	I			4.64
14.750	5.86	5.00	1.736	0	I			4.65
14.833	5.76	5.01	1.739	0	I			4.65
14.917	5.64	5.02	1.741	0	I			4.66
15.000	5.62	5.03	1.743	0	I			4.66
15.083	5.50	5.04	1.744	0	I			4.66

15.167	5.38	5.04	1.744			0		4.66
15.250	5.36	5.03	1.743			0		4.66
15.333	5.24	5.02	1.742			IO		4.66
15.417	5.12	5.02	1.741			IO		4.65
15.500	5.10	5.01	1.739			IO		4.65
15.583	4.65	5.00	1.736			I 0		4.65
15.667	4.15	4.99	1.730			I 0		4.64
15.750	4.05	4.92	1.724			I 0		4.64
15.833	4.01	4.86	1.717			I 0		4.63
15.917	4.00	4.73	1.712			I 0		4.63
16.000	4.01	4.63	1.707			I 0		4.62
16.083	2.80	4.45	1.700		I	I 0		4.61
16.167	1.46	4.12	1.685	I		0		4.60
16.250	1.18	3.71	1.667	I		0		4.58
16.333	1.06	3.34	1.650	I		0		4.56
16.417	1.01	3.00	1.636	I		0		4.55
16.500	1.01	2.72	1.623	I	0			4.53
16.583	0.91	2.46	1.612	I	0			4.52
16.667	0.80	2.23	1.601	I	0			4.51
16.750	0.77	2.02	1.592	I	0			4.50
16.833	0.76	1.95	1.584	I	0			4.49
16.917	0.76	1.95	1.576	I	0			4.49
17.000	0.76	1.94	1.567	I	0			4.48
17.083	0.52	1.94	1.558	I	0			4.47
17.167	0.26	1.94	1.548	I	0			4.45
17.250	0.21	1.93	1.536	I	0			4.44
17.333	0.19	1.93	1.524	I	0			4.43
17.417	0.19	1.93	1.512	I	0			4.42
17.500	0.19	1.92	1.500	I	0			4.40
17.583	0.20	1.92	1.488	I	0			4.39
17.667	0.21	1.92	1.476	I	0			4.38
17.750	0.21	1.91	1.465	I	0			4.36
17.833	0.54	1.91	1.454	I	0			4.35
17.917	0.89	1.91	1.446	I	0			4.34
18.000	0.97	1.91	1.439	I	0			4.33
18.083	1.00	1.91	1.433	I	0			4.33
18.167	1.01	1.90	1.427	I	0			4.32
18.250	1.01	1.90	1.420	I	0			4.31
18.333	1.01	1.90	1.414	I	0			4.31
18.417	1.01	1.90	1.408	I	0			4.30
18.500	1.01	1.90	1.402	I	0			4.29
18.583	0.91	1.89	1.396	I	0			4.29
18.667	0.80	1.89	1.388	I	0			4.28
18.750	0.77	1.89	1.381	I	0			4.27
18.833	0.66	1.89	1.373	I	0			4.26
18.917	0.54	1.89	1.364	I	0			4.25
19.000	0.52	1.88	1.354	I	0			4.24
19.083	0.61	1.88	1.345	I	0			4.23
19.167	0.72	1.88	1.337	I	0			4.22
19.250	0.74	1.88	1.329	I	0			4.21

19.333	0.46	1.87	1.320	I	0				4.20
19.417	0.15	1.87	1.310	I	0				4.19
19.500	0.09	1.87	1.298	I	0				4.18
19.583	0.35	1.86	1.286	I	0				4.17
19.667	0.65	1.86	1.277	I	0				4.16
19.750	0.72	1.86	1.269	I	0				4.15
19.833	0.64	1.86	1.261	I	0				4.14
19.917	0.54	1.85	1.252	I	0				4.13
20.000	0.52	1.85	1.243	I	0				4.12
20.083	0.61	1.85	1.234	I	0				4.11
20.167	0.72	1.85	1.226	I	0				4.10
20.250	0.74	1.84	1.218	I	0				4.09
20.333	0.75	1.84	1.211	I	0				4.08
20.417	0.76	1.84	1.203	I	0				4.08
20.500	0.76	1.84	1.196	I	0				4.07
20.583	0.76	1.84	1.188	I	0				4.06
20.667	0.76	1.83	1.181	I	0				4.05
20.750	0.76	1.83	1.174	I	0				4.04
20.833	0.66	1.83	1.166	I	0				4.03
20.917	0.54	1.83	1.157	I	0				4.02
21.000	0.52	1.82	1.148	I	0				4.01
21.083	0.61	1.82	1.140	I	0				4.01
21.167	0.72	1.82	1.132	I	0				3.99
21.250	0.74	1.81	1.124	I	0				3.96
21.333	0.65	1.80	1.117	I	0				3.93
21.417	0.54	1.79	1.108	I	0				3.90
21.500	0.52	1.79	1.100	I	0				3.87
21.583	0.61	1.78	1.091	I	0				3.83
21.667	0.72	1.77	1.084	I	0				3.80
21.750	0.74	1.76	1.077	I	0				3.78
21.833	0.65	1.76	1.069	I	0				3.75
21.917	0.54	1.75	1.061	I	0				3.72
22.000	0.52	1.74	1.053	I	0				3.69
22.083	0.61	1.73	1.045	I	0				3.66
22.167	0.72	1.73	1.038	I	0				3.63
22.250	0.74	1.72	1.031	I	0				3.60
22.333	0.65	1.71	1.024	I	0				3.58
22.417	0.54	1.71	1.016	I	0				3.55
22.500	0.52	1.70	1.008	I	0				3.52
22.583	0.51	1.69	1.000	I	0				3.48
22.667	0.50	1.68	0.992	I	0				3.45
22.750	0.50	1.68	0.984	I	0				3.42
22.833	0.50	1.67	0.976	I	0				3.39
22.917	0.50	1.66	0.968	I	0				3.36
23.000	0.50	1.65	0.960	I	0				3.33
23.083	0.50	1.65	0.952	I	0				3.30
23.167	0.50	1.64	0.944	I	0				3.27
23.250	0.50	1.63	0.936	I	0				3.24
23.333	0.50	1.62	0.928	I	0				3.21
23.417	0.50	1.62	0.921	I	0				3.18

23.500	0.50	1.61	0.913	I	0				3.15
23.583	0.50	1.60	0.906	I	0				3.12
23.667	0.50	1.59	0.898	I	0				3.10
23.750	0.50	1.59	0.891	I	0				3.07
23.833	0.50	1.58	0.883	I	0				3.04
23.917	0.50	1.57	0.876	I	0				3.01
24.000	0.50	1.56	0.868	I	0				2.98
24.083	0.30	1.55	0.860	I	0				2.95
24.167	0.08	1.54	0.851	I	0				2.92
24.250	0.03	1.53	0.841	I	0				2.88
24.333	0.01	1.52	0.830	I	0				2.84
24.417	0.00	1.51	0.820	I	0				2.80
24.500	0.00	1.49	0.810	I	0				2.76
24.583	0.00	1.48	0.800	I	0				2.72
24.667	0.00	1.47	0.789	I	0				2.68
24.750	0.00	1.46	0.779	I	0				2.64
24.833	0.00	1.44	0.769	I	0				2.60
24.917	0.00	1.43	0.759	I	0				2.57
25.000	0.00	1.42	0.750	I	0				2.53
25.083	0.00	1.41	0.740	I	0				2.49
25.167	0.00	1.40	0.730	I	0				2.46
25.250	0.00	1.38	0.721	I	0				2.42
25.333	0.00	1.37	0.711	I	0				2.38
25.417	0.00	1.36	0.702	I	0				2.35
25.500	0.00	1.35	0.692	I	0				2.31
25.583	0.00	1.34	0.683	I	0				2.28
25.667	0.00	1.33	0.674	I	0				2.24
25.750	0.00	1.32	0.665	I	0				2.21
25.833	0.00	1.30	0.656	I	0				2.17
25.917	0.00	1.29	0.647	I	0				2.14
26.000	0.00	1.28	0.638	I	0				2.10
26.083	0.00	1.27	0.629	I	0				2.07
26.167	0.00	1.26	0.621	I	0				2.04
26.250	0.00	1.25	0.612	I	0				2.00
26.333	0.00	1.24	0.603	I	0				1.97
26.417	0.00	1.22	0.595	I	0				1.94
26.500	0.00	1.21	0.586	I	0				1.91
26.583	0.00	1.20	0.578	I	0				1.87
26.667	0.00	1.18	0.570	I	0				1.84
26.750	0.00	1.17	0.562	I	0				1.81
26.833	0.00	1.16	0.554	I	0				1.78
26.917	0.00	1.14	0.546	I	0				1.75
27.000	0.00	1.13	0.538	I	0				1.72
27.083	0.00	1.12	0.530	I	0				1.69
27.167	0.00	1.11	0.523	I	0				1.66
27.250	0.00	1.09	0.515	I	0				1.63
27.333	0.00	1.08	0.508	I	0				1.61
27.417	0.00	1.07	0.500	I	0				1.58
27.500	0.00	1.06	0.493	I	0				1.55
27.583	0.00	1.04	0.486	I	0				1.52

27.667	0.00	1.03	0.479	I	0				1.49
27.750	0.00	1.02	0.472	I	0				1.47
27.833	0.00	1.01	0.465	I	0				1.44
27.917	0.00	1.00	0.458	I	0				1.41
28.000	0.00	0.99	0.451	I	0				1.39
28.083	0.00	0.98	0.444	I	0				1.36
28.167	0.00	0.96	0.437	I	0				1.34
28.250	0.00	0.95	0.431	I	0				1.31
28.333	0.00	0.94	0.424	I	0				1.29
28.417	0.00	0.93	0.418	I	0				1.26
28.500	0.00	0.92	0.411	I	0				1.24
28.583	0.00	0.91	0.405	I	0				1.21
28.667	0.00	0.90	0.399	I	0				1.19
28.750	0.00	0.89	0.393	I	0				1.17
28.833	0.00	0.88	0.386	I	0				1.14
28.917	0.00	0.87	0.380	I	0				1.12
29.000	0.00	0.86	0.374	I	0				1.10
29.083	0.00	0.85	0.369	I	0				1.07
29.167	0.00	0.84	0.363	I	0				1.05
29.250	0.00	0.83	0.357	I	0				1.03
29.333	0.00	0.82	0.351	I	0				1.01
29.417	0.00	0.81	0.346	I	0				0.99
29.500	0.00	0.80	0.340	I	0				0.97
29.583	0.00	0.79	0.335	I	0				0.96
29.667	0.00	0.77	0.329	I	0				0.94
29.750	0.00	0.76	0.324	I	0				0.93
29.833	0.00	0.75	0.319	I	0				0.91
29.917	0.00	0.74	0.314	I	0				0.90
30.000	0.00	0.73	0.309	I	0				0.88
30.083	0.00	0.71	0.304	I	0				0.87
30.167	0.00	0.70	0.299	I	0				0.86
30.250	0.00	0.69	0.294	I	0				0.84
30.333	0.00	0.68	0.289	I	0				0.83
30.417	0.00	0.67	0.285	I	0				0.82
30.500	0.00	0.66	0.280	I	0				0.80
30.583	0.00	0.65	0.276	I	0				0.79
30.667	0.00	0.64	0.271	I	0				0.78
30.750	0.00	0.63	0.267	I	0				0.76
30.833	0.00	0.62	0.263	I	0				0.75
30.917	0.00	0.61	0.258	I	0				0.74
31.000	0.00	0.60	0.254	I	0				0.73
31.083	0.00	0.59	0.250	I	0				0.72
31.167	0.00	0.58	0.246	I	0				0.71
31.250	0.00	0.57	0.242	I	0				0.69
31.333	0.00	0.56	0.238	I	0				0.68
31.417	0.00	0.55	0.234	I	0				0.67
31.500	0.00	0.54	0.231	I	0				0.66
31.583	0.00	0.53	0.227	I	0				0.65
31.667	0.00	0.52	0.223	I	0				0.64
31.750	0.00	0.52	0.220	I	0				0.63

31.833	0.00	0.51	0.216	I	0				0.62
31.917	0.00	0.50	0.213	I	0				0.61
32.000	0.00	0.49	0.209	IO					0.60
32.083	0.00	0.48	0.206	IO					0.59
32.167	0.00	0.48	0.203	IO					0.58
32.250	0.00	0.47	0.199	IO					0.57
32.333	0.00	0.46	0.196	IO					0.56
32.417	0.00	0.45	0.193	IO					0.55
32.500	0.00	0.45	0.190	IO					0.54
32.583	0.00	0.44	0.187	IO					0.54
32.667	0.00	0.43	0.184	IO					0.53
32.750	0.00	0.43	0.181	IO					0.52
32.833	0.00	0.42	0.178	IO					0.51
32.917	0.00	0.41	0.175	IO					0.50
33.000	0.00	0.40	0.172	IO					0.49
33.083	0.00	0.40	0.170	IO					0.49
33.167	0.00	0.39	0.167	IO					0.48
33.250	0.00	0.39	0.164	IO					0.47
33.333	0.00	0.38	0.162	IO					0.46
33.417	0.00	0.37	0.159	IO					0.46
33.500	0.00	0.37	0.156	IO					0.45
33.583	0.00	0.36	0.154	IO					0.44
33.667	0.00	0.36	0.151	IO					0.43
33.750	0.00	0.35	0.149	IO					0.43
33.833	0.00	0.34	0.147	IO					0.42
33.917	0.00	0.34	0.144	IO					0.41
34.000	0.00	0.33	0.142	IO					0.41
34.083	0.00	0.33	0.140	IO					0.40
34.167	0.00	0.32	0.137	IO					0.39
34.250	0.00	0.32	0.135	IO					0.39
34.333	0.00	0.31	0.133	IO					0.38
34.417	0.00	0.31	0.131	IO					0.38
34.500	0.00	0.30	0.129	IO					0.37
34.583	0.00	0.30	0.127	IO					0.36
34.667	0.00	0.29	0.125	IO					0.36
34.750	0.00	0.29	0.123	IO					0.35
34.833	0.00	0.28	0.121	IO					0.35
34.917	0.00	0.28	0.119	IO					0.34
35.000	0.00	0.27	0.117	IO					0.33
35.083	0.00	0.27	0.115	IO					0.33
35.167	0.00	0.27	0.113	IO					0.32
35.250	0.00	0.26	0.111	IO					0.32
35.333	0.00	0.26	0.110	IO					0.31
35.417	0.00	0.25	0.108	IO					0.31
35.500	0.00	0.25	0.106	O					0.30
35.583	0.00	0.25	0.104	O					0.30
35.667	0.00	0.24	0.103	O					0.29
35.750	0.00	0.24	0.101	O					0.29
35.833	0.00	0.23	0.099	O					0.28
35.917	0.00	0.23	0.098	O					0.28

36.000	0.00	0.23	0.096	0				0.28
36.083	0.00	0.22	0.095	0				0.27
36.167	0.00	0.22	0.093	0				0.27
36.250	0.00	0.22	0.092	0				0.26
36.333	0.00	0.21	0.090	0				0.26
36.417	0.00	0.21	0.089	0				0.25
36.500	0.00	0.21	0.087	0				0.25
36.583	0.00	0.20	0.086	0				0.25
36.667	0.00	0.20	0.085	0				0.24
36.750	0.00	0.20	0.083	0				0.24
36.833	0.00	0.19	0.082	0				0.23
36.917	0.00	0.19	0.081	0				0.23
37.000	0.00	0.19	0.079	0				0.23
37.083	0.00	0.18	0.078	0				0.22
37.167	0.00	0.18	0.077	0				0.22
37.250	0.00	0.18	0.076	0				0.22
37.333	0.00	0.17	0.074	0				0.21
37.417	0.00	0.17	0.073	0				0.21
37.500	0.00	0.17	0.072	0				0.21
37.583	0.00	0.17	0.071	0				0.20
37.667	0.00	0.16	0.070	0				0.20
37.750	0.00	0.16	0.069	0				0.20
37.833	0.00	0.16	0.067	0				0.19
37.917	0.00	0.16	0.066	0				0.19
38.000	0.00	0.15	0.065	0				0.19
38.083	0.00	0.15	0.064	0				0.18
38.167	0.00	0.15	0.063	0				0.18
38.250	0.00	0.15	0.062	0				0.18
38.333	0.00	0.14	0.061	0				0.18
38.417	0.00	0.14	0.060	0				0.17
38.500	0.00	0.14	0.059	0				0.17
38.583	0.00	0.14	0.058	0				0.17
38.667	0.00	0.13	0.057	0				0.16
38.750	0.00	0.13	0.056	0				0.16
38.833	0.00	0.13	0.056	0				0.16
38.917	0.00	0.13	0.055	0				0.16
39.000	0.00	0.13	0.054	0				0.15
39.083	0.00	0.12	0.053	0				0.15
39.167	0.00	0.12	0.052	0				0.15
39.250	0.00	0.12	0.051	0				0.15
39.333	0.00	0.12	0.050	0				0.14
39.417	0.00	0.12	0.050	0				0.14
39.500	0.00	0.11	0.049	0				0.14
39.583	0.00	0.11	0.048	0				0.14
39.667	0.00	0.11	0.047	0				0.14
39.750	0.00	0.11	0.046	0				0.13
39.833	0.00	0.11	0.046	0				0.13
39.917	0.00	0.11	0.045	0				0.13
40.000	0.00	0.10	0.044	0				0.13
40.083	0.00	0.10	0.044	0				0.12

40.167	0.00	0.10	0.043	0				0.12
40.250	0.00	0.10	0.042	0				0.12
40.333	0.00	0.10	0.041	0				0.12
40.417	0.00	0.10	0.041	0				0.12
40.500	0.00	0.09	0.040	0				0.12
40.583	0.00	0.09	0.040	0				0.11
40.667	0.00	0.09	0.039	0				0.11
40.750	0.00	0.09	0.038	0				0.11
40.833	0.00	0.09	0.038	0				0.11
40.917	0.00	0.09	0.037	0				0.11
41.000	0.00	0.09	0.036	0				0.10
41.083	0.00	0.08	0.036	0				0.10
41.167	0.00	0.08	0.035	0				0.10
41.250	0.00	0.08	0.035	0				0.10
41.333	0.00	0.08	0.034	0				0.10
41.417	0.00	0.08	0.034	0				0.10
41.500	0.00	0.08	0.033	0				0.09
41.583	0.00	0.08	0.033	0				0.09
41.667	0.00	0.08	0.032	0				0.09
41.750	0.00	0.07	0.032	0				0.09
41.833	0.00	0.07	0.031	0				0.09
41.917	0.00	0.07	0.031	0				0.09
42.000	0.00	0.07	0.030	0				0.09
42.083	0.00	0.07	0.030	0				0.08
42.167	0.00	0.07	0.029	0				0.08
42.250	0.00	0.07	0.029	0				0.08
42.333	0.00	0.07	0.028	0				0.08
42.417	0.00	0.07	0.028	0				0.08
42.500	0.00	0.06	0.027	0				0.08
42.583	0.00	0.06	0.027	0				0.08
42.667	0.00	0.06	0.026	0				0.08
42.750	0.00	0.06	0.026	0				0.07
42.833	0.00	0.06	0.026	0				0.07
42.917	0.00	0.06	0.025	0				0.07
43.000	0.00	0.06	0.025	0				0.07
43.083	0.00	0.06	0.024	0				0.07
43.167	0.00	0.06	0.024	0				0.07
43.250	0.00	0.06	0.024	0				0.07
43.333	0.00	0.05	0.023	0				0.07
43.417	0.00	0.05	0.023	0				0.07
43.500	0.00	0.05	0.022	0				0.06
43.583	0.00	0.05	0.022	0				0.06
43.667	0.00	0.05	0.022	0				0.06
43.750	0.00	0.05	0.021	0				0.06
43.833	0.00	0.05	0.021	0				0.06
43.917	0.00	0.05	0.021	0				0.06
44.000	0.00	0.05	0.020	0				0.06
44.083	0.00	0.05	0.020	0				0.06
44.167	0.00	0.05	0.020	0				0.06
44.250	0.00	0.05	0.019	0				0.06

44.333	0.00	0.04	0.019	0				0.05
44.417	0.00	0.04	0.019	0				0.05
44.500	0.00	0.04	0.018	0				0.05
44.583	0.00	0.04	0.018	0				0.05
44.667	0.00	0.04	0.018	0				0.05
44.750	0.00	0.04	0.018	0				0.05
44.833	0.00	0.04	0.017	0				0.05
44.917	0.00	0.04	0.017	0				0.05
45.000	0.00	0.04	0.017	0				0.05
45.083	0.00	0.04	0.016	0				0.05
45.167	0.00	0.04	0.016	0				0.05
45.250	0.00	0.04	0.016	0				0.05
45.333	0.00	0.04	0.016	0				0.05
45.417	0.00	0.04	0.015	0				0.04
45.500	0.00	0.04	0.015	0				0.04
45.583	0.00	0.04	0.015	0				0.04
45.667	0.00	0.03	0.015	0				0.04
45.750	0.00	0.03	0.014	0				0.04
45.833	0.00	0.03	0.014	0				0.04
45.917	0.00	0.03	0.014	0				0.04
46.000	0.00	0.03	0.014	0				0.04
46.083	0.00	0.03	0.014	0				0.04
46.167	0.00	0.03	0.013	0				0.04
46.250	0.00	0.03	0.013	0				0.04
46.333	0.00	0.03	0.013	0				0.04
46.417	0.00	0.03	0.013	0				0.04
46.500	0.00	0.03	0.013	0				0.04
46.583	0.00	0.03	0.012	0				0.04
46.667	0.00	0.03	0.012	0				0.03
46.750	0.00	0.03	0.012	0				0.03
46.833	0.00	0.03	0.012	0				0.03
46.917	0.00	0.03	0.012	0				0.03
47.000	0.00	0.03	0.011	0				0.03
47.083	0.00	0.03	0.011	0				0.03
47.167	0.00	0.03	0.011	0				0.03
47.250	0.00	0.03	0.011	0				0.03
47.333	0.00	0.03	0.011	0				0.03
47.417	0.00	0.02	0.010	0				0.03
47.500	0.00	0.02	0.010	0				0.03
47.583	0.00	0.02	0.010	0				0.03
47.667	0.00	0.02	0.010	0				0.03
47.750	0.00	0.02	0.010	0				0.03
47.833	0.00	0.02	0.010	0				0.03
47.917	0.00	0.02	0.010	0				0.03
48.000	0.00	0.02	0.009	0				0.03
48.083	0.00	0.02	0.009	0				0.03
48.167	0.00	0.02	0.009	0				0.03
48.250	0.00	0.02	0.009	0				0.03
48.333	0.00	0.02	0.009	0				0.03
48.417	0.00	0.02	0.009	0				0.02

48.500	0.00	0.02	0.008	0				0.02
48.583	0.00	0.02	0.008	0				0.02
48.667	0.00	0.02	0.008	0				0.02
48.750	0.00	0.02	0.008	0				0.02
48.833	0.00	0.02	0.008	0				0.02
48.917	0.00	0.02	0.008	0				0.02
49.000	0.00	0.02	0.008	0				0.02
49.083	0.00	0.02	0.008	0				0.02
49.167	0.00	0.02	0.007	0				0.02
49.250	0.00	0.02	0.007	0				0.02
49.333	0.00	0.02	0.007	0				0.02
49.417	0.00	0.02	0.007	0				0.02
49.500	0.00	0.02	0.007	0				0.02
49.583	0.00	0.02	0.007	0				0.02
49.667	0.00	0.02	0.007	0				0.02
49.750	0.00	0.02	0.007	0				0.02
49.833	0.00	0.02	0.007	0				0.02
49.917	0.00	0.02	0.006	0				0.02
50.000	0.00	0.01	0.006	0				0.02
50.083	0.00	0.01	0.006	0				0.02
50.167	0.00	0.01	0.006	0				0.02
50.250	0.00	0.01	0.006	0				0.02
50.333	0.00	0.01	0.006	0				0.02
50.417	0.00	0.01	0.006	0				0.02
50.500	0.00	0.01	0.006	0				0.02
50.583	0.00	0.01	0.006	0				0.02
50.667	0.00	0.01	0.006	0				0.02
50.750	0.00	0.01	0.005	0				0.02
50.833	0.00	0.01	0.005	0				0.02
50.917	0.00	0.01	0.005	0				0.02
51.000	0.00	0.01	0.005	0				0.01
51.083	0.00	0.01	0.005	0				0.01
51.167	0.00	0.01	0.005	0				0.01
51.250	0.00	0.01	0.005	0				0.01
51.333	0.00	0.01	0.005	0				0.01
51.417	0.00	0.01	0.005	0				0.01
51.500	0.00	0.01	0.005	0				0.01
51.583	0.00	0.01	0.005	0				0.01
51.667	0.00	0.01	0.005	0				0.01
51.750	0.00	0.01	0.005	0				0.01
51.833	0.00	0.01	0.004	0				0.01
51.917	0.00	0.01	0.004	0				0.01
52.000	0.00	0.01	0.004	0				0.01
52.083	0.00	0.01	0.004	0				0.01
52.167	0.00	0.01	0.004	0				0.01
52.250	0.00	0.01	0.004	0				0.01
52.333	0.00	0.01	0.004	0				0.01
52.417	0.00	0.01	0.004	0				0.01
52.500	0.00	0.01	0.004	0				0.01
52.583	0.00	0.01	0.004	0				0.01

52.667	0.00	0.01	0.004	0				0.01
52.750	0.00	0.01	0.004	0				0.01
52.833	0.00	0.01	0.004	0				0.01
52.917	0.00	0.01	0.004	0				0.01
53.000	0.00	0.01	0.004	0				0.01
53.083	0.00	0.01	0.003	0				0.01
53.167	0.00	0.01	0.003	0				0.01
53.250	0.00	0.01	0.003	0				0.01
53.333	0.00	0.01	0.003	0				0.01
53.417	0.00	0.01	0.003	0				0.01
53.500	0.00	0.01	0.003	0				0.01
53.583	0.00	0.01	0.003	0				0.01
53.667	0.00	0.01	0.003	0				0.01
53.750	0.00	0.01	0.003	0				0.01
53.833	0.00	0.01	0.003	0				0.01
53.917	0.00	0.01	0.003	0				0.01
54.000	0.00	0.01	0.003	0				0.01
54.083	0.00	0.01	0.003	0				0.01
54.167	0.00	0.01	0.003	0				0.01
54.250	0.00	0.01	0.003	0				0.01
54.333	0.00	0.01	0.003	0				0.01
54.417	0.00	0.01	0.003	0				0.01
54.500	0.00	0.01	0.003	0				0.01
54.583	0.00	0.01	0.003	0				0.01
54.667	0.00	0.01	0.003	0				0.01
54.750	0.00	0.01	0.003	0				0.01
54.833	0.00	0.01	0.002	0				0.01
54.917	0.00	0.01	0.002	0				0.01
55.000	0.00	0.01	0.002	0				0.01
55.083	0.00	0.01	0.002	0				0.01
55.167	0.00	0.01	0.002	0				0.01
55.250	0.00	0.01	0.002	0				0.01
55.333	0.00	0.01	0.002	0				0.01
55.417	0.00	0.01	0.002	0				0.01
55.500	0.00	0.01	0.002	0				0.01
55.583	0.00	0.01	0.002	0				0.01
55.667	0.00	0.00	0.002	0				0.01
55.750	0.00	0.00	0.002	0				0.01
55.833	0.00	0.00	0.002	0				0.01
55.917	0.00	0.00	0.002	0				0.01
56.000	0.00	0.00	0.002	0				0.01
56.083	0.00	0.00	0.002	0				0.01
56.167	0.00	0.00	0.002	0				0.01
56.250	0.00	0.00	0.002	0				0.01
56.333	0.00	0.00	0.002	0				0.01
56.417	0.00	0.00	0.002	0				0.01
56.500	0.00	0.00	0.002	0				0.01
56.583	0.00	0.00	0.002	0				0.01
56.667	0.00	0.00	0.002	0				0.00
56.750	0.00	0.00	0.002	0				0.00

56.833	0.00	0.00	0.002	0				0.00
56.917	0.00	0.00	0.002	0				0.00
57.000	0.00	0.00	0.002	0				0.00
57.083	0.00	0.00	0.002	0				0.00
57.167	0.00	0.00	0.002	0				0.00
57.250	0.00	0.00	0.002	0				0.00
57.333	0.00	0.00	0.002	0				0.00
57.417	0.00	0.00	0.002	0				0.00
57.500	0.00	0.00	0.001	0				0.00
57.583	0.00	0.00	0.001	0				0.00
57.667	0.00	0.00	0.001	0				0.00
57.750	0.00	0.00	0.001	0				0.00
57.833	0.00	0.00	0.001	0				0.00
57.917	0.00	0.00	0.001	0				0.00
58.000	0.00	0.00	0.001	0				0.00
58.083	0.00	0.00	0.001	0				0.00
58.167	0.00	0.00	0.001	0				0.00
58.250	0.00	0.00	0.001	0				0.00
58.333	0.00	0.00	0.001	0				0.00
58.417	0.00	0.00	0.001	0				0.00
58.500	0.00	0.00	0.001	0				0.00
58.583	0.00	0.00	0.001	0				0.00
58.667	0.00	0.00	0.001	0				0.00
58.750	0.00	0.00	0.001	0				0.00
58.833	0.00	0.00	0.001	0				0.00
58.917	0.00	0.00	0.001	0				0.00
59.000	0.00	0.00	0.001	0				0.00
59.083	0.00	0.00	0.001	0				0.00
59.167	0.00	0.00	0.001	0				0.00
59.250	0.00	0.00	0.001	0				0.00
59.333	0.00	0.00	0.001	0				0.00
59.417	0.00	0.00	0.001	0				0.00
59.500	0.00	0.00	0.001	0				0.00
59.583	0.00	0.00	0.001	0				0.00
59.667	0.00	0.00	0.001	0				0.00
59.750	0.00	0.00	0.001	0				0.00
59.833	0.00	0.00	0.001	0				0.00
59.917	0.00	0.00	0.001	0				0.00
60.000	0.00	0.00	0.001	0				0.00
60.083	0.00	0.00	0.001	0				0.00
60.167	0.00	0.00	0.001	0				0.00
60.250	0.00	0.00	0.001	0				0.00
60.333	0.00	0.00	0.001	0				0.00
60.417	0.00	0.00	0.001	0				0.00
60.500	0.00	0.00	0.001	0				0.00
60.583	0.00	0.00	0.001	0				0.00
60.667	0.00	0.00	0.001	0				0.00
60.750	0.00	0.00	0.001	0				0.00
60.833	0.00	0.00	0.001	0				0.00
60.917	0.00	0.00	0.001	0				0.00

61.000	0.00	0.00	0.001	0					0.00
61.083	0.00	0.00	0.001	0					0.00
61.167	0.00	0.00	0.001	0					0.00
61.250	0.00	0.00	0.001	0					0.00
61.333	0.00	0.00	0.001	0					0.00
61.417	0.00	0.00	0.001	0					0.00
61.500	0.00	0.00	0.001	0					0.00
61.583	0.00	0.00	0.001	0					0.00
61.667	0.00	0.00	0.001	0					0.00
61.750	0.00	0.00	0.001	0					0.00
61.833	0.00	0.00	0.001	0					0.00
61.917	0.00	0.00	0.001	0					0.00
62.000	0.00	0.00	0.001	0					0.00
62.083	0.00	0.00	0.001	0					0.00
62.167	0.00	0.00	0.001	0					0.00
62.250	0.00	0.00	0.001	0					0.00
62.333	0.00	0.00	0.001	0					0.00
62.417	0.00	0.00	0.001	0					0.00
62.500	0.00	0.00	0.001	0					0.00
62.583	0.00	0.00	0.001	0					0.00
62.667	0.00	0.00	0.001	0					0.00
62.750	0.00	0.00	0.001	0					0.00
62.833	0.00	0.00	0.001	0					0.00
62.917	0.00	0.00	0.001	0					0.00
63.000	0.00	0.00	0.001	0					0.00
63.083	0.00	0.00	0.001	0					0.00
63.167	0.00	0.00	0.000	0					0.00
63.250	0.00	0.00	0.000	0					0.00
63.333	0.00	0.00	0.000	0					0.00
63.417	0.00	0.00	0.000	0					0.00
63.500	0.00	0.00	0.000	0					0.00
63.583	0.00	0.00	0.000	0					0.00
63.667	0.00	0.00	0.000	0					0.00
63.750	0.00	0.00	0.000	0					0.00
63.833	0.00	0.00	0.000	0					0.00
63.917	0.00	0.00	0.000	0					0.00
64.000	0.00	0.00	0.000	0					0.00

*****HYDROGRAPH DATA*****

Number of intervals = 768

Time interval = 5.0 (Min.)

Maximum/Peak flow rate = 5.449 (CFS)

Total volume = 4.094 (Ac.Ft)

Status of hydrographs being held in storage

	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5
--	----------	----------	----------	----------	----------

Peak (CFS)	0.000	0.000	0.000	0.000	0.000
------------	-------	-------	-------	-------	-------

Vol (Ac.Ft)	0.000	0.000	0.000	0.000	0.000
-------------	-------	-------	-------	-------	-------

Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

Will be completed and updated
in Final WQMP

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

How to use this worksheet (also see instructions in Section G of the WQMP Template):

1. Review Column 1 and identify which of these potential sources of stormwater pollutants apply to your site. Check each box that applies.
2. Review Column 2 and incorporate all of the corresponding applicable BMPs in your WQMP Exhibit.
3. Review Columns 3 and 4 and incorporate all of the corresponding applicable permanent controls and operational BMPs in your WQMP. Use the format shown in Table G.1 on page 23 of this WQMP Template. Describe your specific BMPs in an accompanying narrative, and explain any special conditions or situations that required omitting BMPs or substituting alternative BMPs for those shown here.

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE			
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative		
<input checked="" type="checkbox"/> A. On-site storm drain inlets	<input checked="" type="checkbox"/> Locations of inlets. On-site catch basins (CB) have shown on post construction BMP site plan which are only for pre-treatment purpose.	<input checked="" type="checkbox"/> Mark all inlets with the words “Only Rain Down the Storm Drain” or similar. Catch Basin Markers may be available from the Riverside County Flood Control and Water Conservation District, call 951.955.1200 to verify.	<input checked="" type="checkbox"/> Maintain and periodically repaint or replace inlet markings. <input checked="" type="checkbox"/> Provide stormwater pollution prevention information to new site owners, lessees, or operators. <input checked="" type="checkbox"/> See applicable operational BMPs in Fact Sheet SC-44, “Drainage System Maintenance,” in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com <input checked="" type="checkbox"/> Include the following in lease agreements: “Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains.”		
<input type="checkbox"/> B. Interior floor drains and elevator shaft sump pumps		<input type="checkbox"/> State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer.	<input type="checkbox"/> Inspect and maintain drains to prevent blockages and overflow.		
<input type="checkbox"/> C. Interior parking garages		<input type="checkbox"/> State that parking garage floor drains will be plumbed to the sanitary sewer.	<input type="checkbox"/> Inspect and maintain drains to prevent blockages and overflow.		

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input type="checkbox"/> D1. Need for future indoor & structural pest control		<input type="checkbox"/> Note building design features that discourage entry of pests.	<input type="checkbox"/> Provide Integrated Pest Management information to owners, lessees, and operators.
<input type="checkbox"/> D2. Landscape/ Outdoor Pesticide Use	<input type="checkbox"/> Show locations of native trees or areas of shrubs and ground cover to be undisturbed and retained. <input type="checkbox"/> Show self-retaining landscape areas, if any. <input type="checkbox"/> Show stormwater treatment and hydrograph modification management BMPs. (See instructions in Chapter 3, Step 5 and guidance in Chapter 5.)	<input type="checkbox"/> State that final landscape plans will accomplish all of the following. <input type="checkbox"/> Preserve existing native trees, shrubs, and ground cover to the maximum extent possible. <input type="checkbox"/> Design landscaping to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution. <input type="checkbox"/> Where landscaped areas are used to retain or detain stormwater, specify plants that are tolerant of saturated soil conditions. <input type="checkbox"/> Consider using pest-resistant plants, especially adjacent to hardscape. <p>To insure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions.</p>	<input type="checkbox"/> Maintain landscaping using minimum or no pesticides. <input type="checkbox"/> See applicable operational BMPs in “What you should know for....Landscape and Gardening” at http://rcflood.org/stormwater/Error! Hyperlink reference not valid. <input type="checkbox"/> Provide IPM information to new owners, lessees and operators.

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input type="checkbox"/> E. Pools, spas, ponds, decorative fountains, and other water features.	<input type="checkbox"/> Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet. (Exception: Public pools must be plumbed according to County Department of Environmental Health Guidelines.)	If the Co-Permittee requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements.	<input type="checkbox"/> See applicable operational BMPs in "Guidelines for Maintaining Your Swimming Pool, Jacuzzi and Garden Fountain" at http://rcflood.org/stormwater/
<input type="checkbox"/> F. Food service	<input type="checkbox"/> For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. <input type="checkbox"/> On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer.	<input type="checkbox"/> Describe the location and features of the designated cleaning area. <input type="checkbox"/> Describe the items to be cleaned in this facility and how it has been sized to insure that the largest items can be accommodated.	<input type="checkbox"/> See the brochure, "The Food Service Industry Best Management Practices for: Restaurants, Grocery Stores, Delicatessens and Bakeries" at http://rcflood.org/stormwater/ Provide this brochure to new site owners, lessees, and operators.
<input type="checkbox"/> G. Refuse areas	<input type="checkbox"/> Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. <input type="checkbox"/> If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent runoff and show locations of berms to prevent runoff from the area. <input type="checkbox"/> Any drains from dumpsters, compactors, and tallow bin areas shall be connected to a grease removal device before discharge to sanitary sewer.	<input type="checkbox"/> State how site refuse will be handled and provide supporting detail to what is shown on plans. <input type="checkbox"/> State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.	<input type="checkbox"/> State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input type="checkbox"/> H. Industrial processes.	<input type="checkbox"/> Show process area.	<input type="checkbox"/> If industrial processes are to be located on site, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system."	<input type="checkbox"/> See Fact Sheet SC-10, "Non-Stormwater Discharges" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com See the brochure "Industrial & Commercial Facilities Best Management Practices for: Industrial, Commercial Facilities" at http://rcflood.org/stormwater/

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input type="checkbox"/> I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.)	<input type="checkbox"/> Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent run-on or run-off from area. <input type="checkbox"/> Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. <input type="checkbox"/> Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site.	Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. Where appropriate, reference documentation of compliance with the requirements of Hazardous Materials Programs for: <ul style="list-style-type: none"> ▪ Hazardous Waste Generation ▪ Hazardous Materials Release Response and Inventory ▪ California Accidental Release (CalARP) ▪ Aboveground Storage Tank ▪ Uniform Fire Code Article 80 Section 103(b) & (c) 1991 ▪ Underground Storage Tank www.cchealth.org/groups/hazmat/	<input type="checkbox"/> See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input type="checkbox"/> J. Vehicle and Equipment Cleaning	<input type="checkbox"/> Show on drawings as appropriate: <ol style="list-style-type: none"> (1) Commercial/industrial facilities having vehicle/equipment cleaning needs shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes shall have a paved, bermed, and covered car wash area (unless car washing is prohibited on-site and hoses are provided with an automatic shut-off to discourage such use). (3) Washing areas for cars, vehicles, and equipment shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. (4) Commercial car wash facilities shall be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer, or a wastewater reclamation system shall be installed. 	<input type="checkbox"/> If a car wash area is not provided, describe any measures taken to discourage on-site car washing and explain how these will be enforced.	Describe operational measures to implement the following (if applicable): <ul style="list-style-type: none"> <input type="checkbox"/> Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Refer to "Outdoor Cleaning Activities and Professional Mobile Service Providers" for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/ <input type="checkbox"/> Car dealerships and similar may rinse cars with water only.

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input type="checkbox"/> K. Vehicle/Equipment Repair and Maintenance	<ul style="list-style-type: none"> <input type="checkbox"/> Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to prevent run-on and runoff of stormwater. <input type="checkbox"/> Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas. <input type="checkbox"/> Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. 	<ul style="list-style-type: none"> <input type="checkbox"/> State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. <input type="checkbox"/> State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. <input type="checkbox"/> State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. 	<p>In the Stormwater Control Plan, note that all of the following restrictions apply to use the site:</p> <ul style="list-style-type: none"> <input type="checkbox"/> No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. <input type="checkbox"/> No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately. <input type="checkbox"/> No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. <p>Refer to "Automotive Maintenance & Car Care Best Management Practices for Auto Body Shops, Auto Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations". Brochure can be found at http://rcflood.org/stormwater/</p> <p>Refer to Outdoor Cleaning Activities and Professional Mobile Service Providers for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/</p>

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input type="checkbox"/> L. Fuel Dispensing Areas	<ul style="list-style-type: none"> <input type="checkbox"/> Fueling areas⁶ shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable. <input type="checkbox"/> Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area¹.] The canopy [or cover] shall not drain onto the fueling area. 		<ul style="list-style-type: none"> <input type="checkbox"/> The property owner shall dry sweep the fueling area routinely. <input type="checkbox"/> See the Fact Sheet SD-30, "Fueling Areas" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

⁶ The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<ul style="list-style-type: none"> ■ M. Loading Docks 	<ul style="list-style-type: none"> ■ Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer. ■ Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation. ■ Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. 		<ul style="list-style-type: none"> ■ Move loaded and unloaded items indoors as soon as possible. ■ See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input checked="" type="checkbox"/> N. Fire Sprinkler Test Water	<p>Project site fire water will be placed through the site, see post-construction BMP site plan. On-site fire sprinkler test water will be collected by the on-site catch basins and conveyed to the biorention basins through the storm drain system.</p>	<input checked="" type="checkbox"/> Provide a means to drain fire sprinkler test water to the sanitary sewer.	<input checked="" type="checkbox"/> See the note in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
<input type="checkbox"/> O. Miscellaneous Drain or Wash Water or Other Sources <input type="checkbox"/> Boiler drain lines <input type="checkbox"/> Condensate drain lines <input type="checkbox"/> Rooftop equipment <input type="checkbox"/> Drainage sumps <input type="checkbox"/> Roofing, gutters, and trim. <input type="checkbox"/> Other sources		<input type="checkbox"/> Boiler drain lines shall be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system. <input type="checkbox"/> Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system. <input type="checkbox"/> Rooftop equipment with potential to produce pollutants shall be roofed and/or have secondary containment. <input type="checkbox"/> Any drainage sumps on-site shall feature a sediment sump to reduce the quantity of sediment in pumped water. <input type="checkbox"/> Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff. <input type="checkbox"/> Include controls for other sources as specified by local reviewer.	

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
<input checked="" type="checkbox"/> P. Plazas, sidewalks, and parking lots.	Project site plaza, sidewalks and parking lots are designed through the site, see Post-Construction BMP Site Plan.		<input checked="" type="checkbox"/> Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.

OPERATIONAL SOURCE CONTROL BMP'S

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
Onsite Storm Drain Inlet	Mark all inlets with the words "Only Rain Down the Storm Drain" or similar. Catch Basin Markers may be available from the Riverside County Flood Control and Water Conservation District. Call (951) 955-1200 to verify availability.	<ul style="list-style-type: none"> • Maintain and periodically repaint or replace inlet markings. • Provide stormwater pollution prevention information to new site owners, lessees, or operators. • See applicable operational BMP fact sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com • Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains."
Loading Docks	The project site will have loading docks which are shown on the Water Quality Management plan. Loading docks shall be inspected on a weekly basis to help ensure that any trash and debris are collected prior to being washed into the storm drain system. All stormwater runoff from the loading dock areas will be discharged to a bioretention basin. Basin overflow will be conveyed to the public storm drain system. Documentation of loading dock inspection/maintenance shall be kept by the owner in perpetuity.	<ul style="list-style-type: none"> • Move loaded and unloaded items indoors as soon as possible. See fact sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
Fire Sprinkler Test	Underground fire protection service and fire sprinklers test will be provided per the uniform fire code and the requirements of Riverside County.	<ul style="list-style-type: none"> • Provide a means to drain fire sprinkler test water to the sanitary sewer.
Plazas, sidewalks, and Parking Lots	Documentation of such sweeping shall be kept by the owner in perpetuity. Frequency of sweeping shall be adjusted as needed to maintain a clean site.	<ul style="list-style-type: none"> • Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into storm drain system. Collect wash water containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.
Trash Storage Areas	Trash storage areas shall be paved with an impervious surface designed not to allow run-on from adjoining areas. Trash storage areas shall be designed to divert runoff from adjoining roofs and pavements from the surrounding area and screened or walled to prevent off-site transport of trash. Trash dumpsters (containers) shall be leak proof and have attached covers and lids. Trash enclosures shall be roofed per City standards and the	<ul style="list-style-type: none"> • Adequate number of receptacles shall be provided. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available onsite. See fact sheet SC-34 "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbook at www.cabmphandbooks.com and in Appendix 10.

	<p>details on the WQMP exhibit in Appendix 1. Trash compactors shall be roofed and set on a concrete pad per City standards. The pad shall be a minimum of one foot larger all around than the trash compactor and sloped to drain to a sanitary sewer line. Connection of trash area drains to the MS4 is prohibited. See CASQA SD-32 BMP fact sheet in Appendix 10 for additional information. Signs shall be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.</p>	
--	---	--

SOURCE CONTROL BMPs INCLUDED ONSITE		
IDENTIFIER	DESCRIPTION OF BMP	RESPONSIBLE PARTY
N1	EDUCATION ON STORMWATER BMPs	OWNER
N2	ACTIVITY RESTRICTIONS	OWNER
N3	LANDSCAPE MANAGEMENT BMPS	OWNER
N4	BMP MAINTENANCE	OWNER
N6	LOCAL WATER QUALITY ORDINANCES	OWNER
N7	PROVIDE SPILL PLAN	OWNER
N10	UNIFORM FIRE CODE IMPLEMENTATION	OWNER
N11	LITTER/DEBRIS CONTROL PROGRAM	OWNER
N12	EMPLOYEE TRAINING	OWNER
N13	HOUSEKEEPING OF LOADING DOCKS	OWNER
N14	CATCH BASIN INSPECTION PROGRAM	OWNER
N15	VACUUM SWEEPING OF PARKING LOTS	OWNER
N17	NPDES COMPLIANCE	OWNER
S1	STORM DRAIN STENCILING	OWNER
S3	REDUCED WASTE STORAGE POLLUTION	OWNER
S4	EFFICIENT IRRIGATION SYSTEM	OWNER
S5	LANDSCAPING MIN. 1-2" BELOW PAVEMENT	OWNER

Appendix 9: O&M

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

Will be provided in Final WQMP

The building will be leased, but the maintenance responsibility will continue to be on the owner (Orchard Logistic Venture, LLC).

Appendix 10: Educational Materials

BMP Fact sheets, Maintenance Guidelines and Other End-User BMP Information

Will be provided in Final WQMP